Publications

Detailed Information

Architecture Mapping of the Inner Mitochondrial Membrane Proteome by Chemical Tools in Live Cells

Cited 60 time in Web of Science Cited 63 time in Scopus
Authors

Lee, Song-Yi; Kang, Myeong-Gyun; Shin, Sanghee; Kwak, Chulhwan; Kwon, Taejoon; Seo, Jeong Kon; Kim, Jong-Seo; Rhee, Hyun-Woo

Issue Date
2017-03
Publisher
American Chemical Society
Citation
Journal of the American Chemical Society, Vol.139 No.10, pp.3651-3662
Abstract
The inner mitochondria membrane (IMM) proteome plays a central role in maintaining mitochondria' physiology and cellular metabolism. Various important biochemical reactions such as oxidative phosphorylation, metabolite production, and mitochondrial biogenesis are conducted by the IMM proteome, and mitochondria-targeted therapeutics have been developed for IMM proteins, which is deeply related for various human metabolic diseases including cancer and neurodegenerative diseases. However, the membrane topology of the IMM proteome remains largely unclear because of the lack of methods to evaluate it in live cells in a high-throughput manner. In this article, we reveal the in vivo topological direction of 135 IMM proteins, using an in situ-generated radical probe with genetically targeted peroxidase (APEX). Owing to the short lifetime of phenoxyl radicals generated in situ by submitochondrial targeted APEX and the impermeability of the IMM to small molecules, the solvent-exposed tyrosine residues of both the matrix and intermembrane space (IMS) sides of IMM proteins were exclusively labeled with the radical probe in live cells by Matrix-APEX and IMS-APEX, respectively and identified by mass spectrometry. From this analysis, we confirmed 58 IMM protein topologies and we could determine the topological direction of 77 IMM proteins whose topology at the IMM has not been fully characterized. We also found several 1MM proteins (e.g., LETM1 and OXA1) whose topological information should be revised on the basis of our results. Overall, our identification of structural information on the mitochondria' inner-membrane proteome can provide valuable insights for the architecture and connectome of the IMM proteome in live cells.
ISSN
0002-7863
URI
https://hdl.handle.net/10371/201893
DOI
https://doi.org/10.1021/jacs.6b10418
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • School of Biological Sciences
Research Area Molecular Interactomics, Proteomics, Systems Biology, 단백체학, 분자상호작용체학, 시스템생물학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share