Publications

Detailed Information

E-beam-enhanced solid-state mechanical amorphization of α-quartz: Reduced deformation barrier via localized excess electrons as network modifiers

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

Kang, Sung-Gyu; Jeong, Wonseok; Paeng, Jeongin; Kim, Hwangsun; Lee, Eunsol; Park, Gyeong-Su; Han, Seung Wu; Han, Heung-Nam; Choi, In Suk

Issue Date
2023-06
Publisher
Elsevier BV
Citation
Materials Today, Vol.66, pp.62-71
Abstract
Under hydrostatic pressure, α-quartz (α-SiO2) undergoes solid-state mechanical amorphization wherein the interpenetration of [SiO4]2− tetrahedra occurs and the material loses crystallinity. This phase transformation requires a high hydrostatic pressure of 14 GPa because the repulsive forces resulting from the ionic nature of the Si–O bonds prevent the severe distortion of the atomic configuration. Herein, we experimentally and computationally demonstrate that e-beam irradiation changes the nature of the interatomic bonds in α-quartz and enhances the solid-state mechanical amorphization at nanoscale. Specifically, during in situ uniaxial compression, a larger permanent deformation occurs in α-quartz submicron pillars compressed during e-beam irradiation than in those without e-beam irradiation. Microstructural analysis reveals that the large permanent deformation under e-beam irradiation originates from the enhanced mechanical amorphization of α-quartz and the subsequent viscoplastic deformation of the amorphized region. Further, atomic-scale simulations suggest that the delocalized excess electrons introduced by e-beam irradiation move to highly distorted atomic configurations and alleviate the repulsive force, thus reducing the barrier to the solid-state mechanical amorphization. These findings deepen our understanding of electron–matter interactions and can be extended to new glass forming and processing technologies at nano- and microscale.
ISSN
1369-7021
URI
https://hdl.handle.net/10371/201930
DOI
https://doi.org/10.1016/j.mattod.2023.04.009
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Materials Science & Engineering
Research Area High Temperature Alloys, High Strength , Nano Mechanics and Nano Structure Design for Ultra Strong Materials, Shape and Pattern Design for Engineering Materials

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share