Publications

Detailed Information

Thermally induced atomic reconstruction into fully commensurate structures of transition metal dichalcogenide layers

Cited 2 time in Web of Science Cited 3 time in Scopus
Authors

Baek, Ji-Hwan; Kim, Hyoung Gyun; Lim, Soo Yeon; Hong, Seong Chul; Chang, Yunyeong; Ryu, Huije; Jung, Yeonjoon; Jang, Hajung; Kim, Jungcheol; Zhang, Yichao; Watanabe, Kenji; Taniguchi, Takashi; Huang, Pinshane Y.; Cheong, Hyeonsik; Kim, Miyoung; Lee, Gwan-Hyoung

Issue Date
2023-12
Publisher
Nature Publishing Group
Citation
Nature Materials, Vol.22 No.12, pp.1463-1469
Abstract
Twist angle between two-dimensional layers is a critical parameter that determines their interfacial properties, such as moire excitons and interfacial ferro-electricity. To achieve better control over these properties for fundamental studies and various applications, considerable efforts have been made to manipulate twist angle. However, due to mechanical limitations and the inevitable formation of incommensurate regions, there remains a challenge in attaining perfect alignment of crystalline orientation. Here we report a thermally induced atomic reconstruction of randomly stacked transition metal dichalcogenide multilayers into fully commensurate heterostructures with zero twist angle by encapsulation annealing, regardless of twist angles of as-stacked samples and lattice mismatches. We also demonstrate the selective formation of R- and H-type fully commensurate phases with a seamless lateral junction using chemical vapour-deposited transition metal dichalcogenides. The resulting fully commensurate phases exhibit strong photoluminescence enhancement of the interlayer excitons, even at room temperature, due to their commensurate structure with aligned momentum coordinates. Our work not only demonstrates a way to fabricate zero-twisted, two-dimensional bilayers with R- and H-type configurations, but also provides a platform for studying their unexplored properties. Encapsulation annealing leads to atomic reconstruction of transition metal dichalcogenide layers into fully commensurate structures with zero twist angle, enabling control over interfacial properties.
ISSN
1476-1122
URI
https://hdl.handle.net/10371/202056
DOI
https://doi.org/10.1038/s41563-023-01690-2
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Materials Science & Engineering
Research Area 2D materials, 2차원 물질, Smiconductor process, semiconductor devices, 반도체 공정, 반도체 소자

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share