Publications

Detailed Information

Evolving scattering networks for engineering disorder

Cited 9 time in Web of Science Cited 9 time in Scopus
Authors

Yu, Sunkyu

Issue Date
2023-02
Publisher
Springer Nature
Citation
Nature Computational Science, Vol.3 No.2, pp.128-138
Abstract
Network science provides a powerful tool for unraveling the complexities of social, technological and biological systems. Constructing networks using wave phenomena is also of great interest in devising advanced hardware for machine learning, as shown in optical neural networks. Although most wave-based networks have employed static network models, the impact of evolving models in network science provides strong motivation to apply dynamical network modeling to wave physics. Here the concept of evolving scattering networks for scattering phenomena is developed. The network is defined by links, node degrees and their evolution processes modeling multi-particle interferences, which directly determine scattering from disordered materials. I demonstrate the concept by examining network-based material classification, microstructure screening and preferential attachment in evolutions, which are applied to stealthy hyperuniformity. The results enable independent control of scattering from different length scales, revealing superdense material phases in short-range order. The proposed concept provides a bridge between wave physics and network science to resolve multiscale material complexities and open-system material design. The concept of evolving scattering networks is proposed for material design in wave physics. The concept has the potential to enable network-based material classification, microstructure screening and the design of stealthy hyperuniformity with superdense phases.
ISSN
2662-8457
URI
https://hdl.handle.net/10371/202186
DOI
https://doi.org/10.1038/s43588-022-00395-x
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Electrical and Computer Engineering
Research Area Disordered, Open-System Wave Mechanics, Photonic AI Systems, Photonic Neuromorphic Devices, 광학 뉴로모픽 소자, 광학 인공지능 시스템, 무질서, 열린계 파동역학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share