Publications

Detailed Information

Bowing-alleviated continuous bandgap engineering of wafer-scale WS2xSe2(1-x) monolayer alloys and their assembly into hetero-multilayers : Bowing-alleviated continuous bandgap engineering of wafer-scale WS(2)(x)Se(2(1-x) )monolayer alloys and their assembly into hetero-multilayers

Cited 4 time in Web of Science Cited 5 time in Scopus
Authors

Kang, Hee Seong; Kang, Jung Hoon; Lee, Sol; Lee, Kihyun; Koo, Do Hyoung; Kim, Yong-Sung; Hong, Young Joon; Kim, Yong-Jin; Kim, Kwanpyo; Lee, Donghun; Lee, Chul-Ho

Issue Date
2022-12
Publisher
Nature Publishing Group
Citation
NPG Asia Materials, Vol.14 No.1, p. 90
Abstract
Bandgap engineering of compound semiconductors and the fabrication of bandgap-modulated heterostructures are important for enabling the development of modern optoelectronics. However, these engineering processes are challenging for two-dimensional (2D) semiconductors of transition metal dichalcogenides, particularly on a large scale. Herein, we report the wafer-scale homogeneous growth of composition-modulated WS2xSe2(1-x) alloys with a continuously tunable bandgap using metal-organic chemical vapor deposition. Well-optimized growth produces monolayer films with excellent homogeneity over the entire wafer. The substitutional atomic chalcogen (S, Se) concentration in WS2xSe2(1-x) alloys is precisely controlled by varying the flow rate of the metal-organic precursors, leading to a bandgap modulation from 1.67 to 2.05 eV, as determined from absorbance spectra. Notably, the optical bandgap of WS2xSe2(1-x) alloys exhibits a nearly linear relationship with the chalcogen composition, implying a low bowing effect. This bowing-alleviated bandgap modulation is attributed to the small lattice mismatch, strain relaxation, and thermodynamic miscibility in the WS2xSe2(1-x) alloys, as confirmed by density-functional theory calculations. Furthermore, the fabrication of hetero-multilayers by stacking differently alloyed films is demonstrated. The produced heterostructure film exhibits a broad spectral absorbance distinct from that of the individual layers. The findings of this study provide insights for the advancement of versatile design of functional 2D optoelectronics.
ISSN
1884-4049
URI
https://hdl.handle.net/10371/202221
DOI
https://doi.org/10.1038/s41427-022-00437-w
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Electrical and Computer Engineering
Research Area 2차원 반도체 소자 및 재료, High-Performance 2D Electronics, Low-Power 2D Electronics, 뉴로모픽 소자 및 응용기술, 저전력 소자 및 소자물리

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share