Publications

Detailed Information

Organic Field Effect Transistors Based on Graphene and Hexagonal Boron Nitride Heterostructures

Cited 67 time in Web of Science Cited 70 time in Scopus
Authors

Kang, Seok Ju; Lee, Gwan-Hyoung; Yu, Young-Jun; Zhao, Yue; Kim, Bumjung; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Kim, Philip; Nuckolls, Colin

Issue Date
2014-08
Publisher
John Wiley & Sons Ltd.
Citation
Advanced Functional Materials, Vol.24 No.32, pp.5157-5163
Abstract
Enhancing the device performance of single crystal organic field effect transistors (OFETs) requires both optimized engineering of efficient injection of the carriers through the contact and improvement of the dielectric interface for reduction of traps and scattering centers. Since the accumulation and flow of charge carriers in operating organic FETs takes place in the first few layers of the semiconductor next to the dielectric, the mobility can be easily degraded by surface roughness, charge traps, and foreign molecules at the interface. Here, a novel structure for high-performance rubrene OFETs is demonstrated that uses graphene and hexagonal boron nitride (hBN) as the contacting electrodes and gate dielectric layer, respectively. These heterostacked OFETs are fabricated by lithography-free dry-transfer method that allows the transfer of graphene and hBN on top of an organic single crystal, forming atomically sharp interfaces and efficient charge carrier-injection electrodes without damage or contamination. The resulting heterostructured OFETs exhibit both high mobility and low operating gate voltage, opening up new strategy to make high-performance OFETs and great potential for flexible electronics.
ISSN
1616-301X
URI
https://hdl.handle.net/10371/203526
DOI
https://doi.org/10.1002/adfm.201400348
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Materials Science & Engineering
Research Area 2D materials, 2차원 물질, Smiconductor process, semiconductor devices, 반도체 공정, 반도체 소자

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share