Publications

Detailed Information

Tightly bound trions in monolayer MoS 2

Cited 2241 time in Web of Science Cited 2314 time in Scopus
Authors

Mak, Kin Fai; He, Keliang; Lee, Changgu; Lee, Gwan Hyoung; Hone, James; Heinz, Tony F.; Shan, Jie

Issue Date
2013-03
Publisher
Nature Publishing Group
Citation
Nature Materials, Vol.12 No.3, pp.207-211
Abstract
Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties(1). In contrast to graphene, monolayer MoS2 is a non-centrosymmetric material with a direct energy gap(2,5). Strong photoluminescence(2,3) a current on/off ratio exceeding 10(8) in field-effect transistors(6), and efficient valley and spin control by optical helicity(7-9) have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS2 field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (similar to 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals.
ISSN
1476-1122
URI
https://hdl.handle.net/10371/203535
DOI
https://doi.org/10.1038/NMAT3505
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Materials Science & Engineering
Research Area 2D materials, 2차원 물질, Smiconductor process, semiconductor devices, 반도체 공정, 반도체 소자

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share