Browse

리포터유전자를 이용한 조골세포 분화정도에 관한 연구 : A study on the osteoblast differentiation using osteocalcin gene promoter controlling luciferase expression

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

김경화; 박윤정; 이용무; 한중석; 이동수; 이승진; 정종평; 설양조

Issue Date
2006
Publisher
대한치주과학회
Citation
대한치주과학회지. 2006;36:839-847.
Keywords
osteocalcin promoter0G2bone differentiationluciferaseosteoblast
Abstract
The aim of this study is to monitor reporter gene expression under osteocalcin gene promoter, using a real-time molecular imaging system, as tool to investigate osteoblast differentiation. The promoter region of mouse osteocalcin gene 2 (mOG2), the best-characterized osteoblast-specific gene, was inserted in promoterless luciferase reporter vector. Expression of reporter gene was confirmed and relationship between the reporter gene expression and osteoblastic differentiation was evaluated. Gene expression according to osteoblstic differentiation on biomaterials, utilizing a real-time molecular imaging system, was monitored. Luciferase was expressed at the only cells transduced with pGL4/mOGP and the level of expression was statistically higher at cells cultured in mineralization medium than cells in growth medium. CCCD camera detected the luciferase expression and was visible differentiation-dependent intensity of luminescence. The cells produced osteocalcin with time-dependent increment in BMP-2 treated cells and there was difference between BMP-2 treated cells and untreated cells at 14days. There was difference at the level of luciferase expression under pGL4/mOGP between BMP-2 treated cells and untreated cells at 3days. CCCD camera detected the luciferase expression at cells transduced with pGL4/mOGP on Ti disc and was visible differentiation-dependent intensity of luminescence This study shows that 1) expression of luciferase is regulated by the mouse OC promoter, 2) the CCCD detection system is a reliable quantitative gene detection tool for the osteoblast differentiation, 3) the dynamics of mouse OC promoter regulation during osteoblast differentiation is achieved in real time and quantitatively on biomaterial. The present system is a very reliable system for monitoring of osteoblast differentiation in real time and may be used for monitoring the effects of growth factors, drug, cytokines and biomaterials on osteoblast differentiation in animal.
ISSN
0250-3352
Language
Korean
URI
https://hdl.handle.net/10371/47411
Files in This Item:
Appears in Collections:
College of Dentistry/School of Dentistry (치과대학/치의학대학원)Dept. of Dentistry (치의학과)Journal Papers (저널논문_치의학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse