Publications

Detailed Information

White matter neuroplastic changes in long-term trained players of the game of "Baduk" (GO): A voxel-based diffusion-tensor imaging study

DC Field Value Language
dc.contributor.authorLee, Boreom-
dc.contributor.authorPark, Ji-Young-
dc.contributor.authorJung, Wi Hoon-
dc.contributor.authorKim, Hee Sun-
dc.contributor.authorChoi, Chi-Hoon-
dc.contributor.authorKang, Do-Hyung-
dc.contributor.authorKwon, Jun Soo-
dc.contributor.authorJang, Joon Hwan-
dc.contributor.authorOh, Jungsu S.-
dc.date.accessioned2012-07-04T06:55:05Z-
dc.date.available2012-07-04T06:55:05Z-
dc.date.issued2010-08-01-
dc.identifier.citationNEUROIMAGE; Vol.52 1; 9-19ko_KR
dc.identifier.issn1053-8119-
dc.identifier.urihttps://hdl.handle.net/10371/78444-
dc.description.abstractCurrently, one of the most challenging issues in modern neuroscience is learning-induced neural plasticity Many researchers have identified activation-dependent structural brain plasticity in gray and white matter The game of Baduk is known to require many cognitive processes, and long-term training in such processes would be expected to cause structural changes in related brain areas We conducted voxel-based analyses of diffusion-tensor imaging (DTI) data and found that, compared to inexperienced controls, long-term trained Baduk players developed larger regions of white matter with increased fractional anisotropy (FA) values in the frontal, cingulum, and striato-thalamic areas that are related to attentional control, working memory, executive regulation, and problem-solving In addition, inferior temporal regions with increased FA indicate that Baduk experts tend to develop a task-specific template for the game, as compared to controls. In contrast, decreased FA found in dorsolateral premotor and parietal areas indicate that Baduk experts were less likely than were controls to use structures related to load-dependent memory capacity Right-side dominance in Baduk experts suggests that the tasks involved are mainly spatial processes Altogether, long-term Baduk training appears to cause structural brain changes associated with many of the cognitive aspects necessary for game play, and investigation of the mechanism underpinning such changes might be helpful for improving higher-order cognitive capacities, such as learning, abstract reasoning, and self-control, which can facilitate education and cognitive therapies (C) 2010 Elsevier Inc. All rights reservedko_KR
dc.description.sponsorshipThis research was supported by World Class University program
through the Korea Science and Engineering Foundation funded by the
Ministry of Education, Science and Technology (R32-10142).
ko_KR
dc.language.isoenko_KR
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCEko_KR
dc.subjectBadukko_KR
dc.subjectBrain developmentko_KR
dc.subjectNeural plasticityko_KR
dc.subjectDiffusion-tensor imagingko_KR
dc.subjectCognitive executionko_KR
dc.titleWhite matter neuroplastic changes in long-term trained players of the game of "Baduk" (GO): A voxel-based diffusion-tensor imaging studyko_KR
dc.typeArticleko_KR
dc.contributor.AlternativeAuthor이보름-
dc.contributor.AlternativeAuthor박지영-
dc.contributor.AlternativeAuthor정이훈-
dc.contributor.AlternativeAuthor김희선-
dc.contributor.AlternativeAuthor오정수-
dc.contributor.AlternativeAuthor최치훈-
dc.contributor.AlternativeAuthor장준환-
dc.contributor.AlternativeAuthor강도형-
dc.contributor.AlternativeAuthor권준수-
dc.identifier.doi10.1016/j.neuroimage.2010.04.014-
dc.citation.journaltitleNEUROIMAGE-
dc.description.citedreferenceChoi CH, 2010, NEUROREPORT, V21, P73, DOI 10.1097/WNR.0b013e3283345eb0-
dc.description.citedreferenceOh JS, 2009, HUM BRAIN MAPP, V30, P3812, DOI 10.1002/hbm.20809-
dc.description.citedreferenceWeidner R, 2009, J COGNITIVE NEUROSCI, V21, P2100-
dc.description.citedreferenceHaworth CMA, 2009, BEHAV GENET, V39, P437, DOI 10.1007/s10519-009-9271-2-
dc.description.citedreferenceHappe F, 2009, PHILOS T R SOC B, V364, P1369, DOI 10.1098/rstb.2008.0332-
dc.description.citedreferenceWoollett K, 2009, PHILOS T R SOC B, V364, P1407, DOI 10.1098/rstb.2008.0288-
dc.description.citedreferenceButz M, 2009, BRAIN RES REV, V60, P287, DOI 10.1016/j.brainresrev.2008.12.023-
dc.description.citedreferenceLuders E, 2009, NEUROIMAGE, V45, P672, DOI 10.1016/j.neuroimage.2008.12.061-
dc.description.citedreferenceHyde KL, 2009, J NEUROSCI, V29, P3019, DOI 10.1523/JNEUROSCI.5118-08.2009-
dc.description.citedreferenceThomason ME, 2009, J COGNITIVE NEUROSCI, V21, P316-
dc.description.citedreferenceEricsson KA, 2009, ANN NY ACAD SCI, V1172, P199, DOI 10.1196/annals.1393.001-
dc.description.citedreferenceHoptman MJ, 2008, SCHIZOPHR RES, V106, P115, DOI 10.1016/j.schres.2008.07.023-
dc.description.citedreferenceKeck T, 2008, NAT NEUROSCI, V11, P1162, DOI 10.1038/nn.2181-
dc.description.citedreferenceManning L, 2008, BEHAV BRAIN RES, V192, P143, DOI 10.1016/j.bbr.2008.04.001-
dc.description.citedreferencede Rover M, 2008, HUM BRAIN MAPP, V29, P1068, DOI 10.1002/hbm.20445-
dc.description.citedreferenceTeutsch S, 2008, NEUROIMAGE, V42, P845, DOI 10.1016/j.neuroimage.2008.05.044-
dc.description.citedreferencede Lange FP, 2008, BRAIN, V131, P2172, DOI 10.1093/brain/awn140-
dc.description.citedreferenceGuye M, 2008, CURR OPIN NEUROL, V21, P393-
dc.description.citedreferenceDriemeyer J, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002669-
dc.description.citedreferenceAnderson JR, 2008, TRENDS COGN SCI, V12, P136-
dc.description.citedreferenceIzhikevich EM, 2008, P NATL ACAD SCI USA, V105, P3593, DOI 10.1073/pnas.0712231105-
dc.description.citedreferenceAlexopoulos GS, 2008, AM J PSYCHIAT, V165, P238-
dc.description.citedreferenceMcnab F, 2008, NAT NEUROSCI, V11, P103, DOI 10.1038/nn2024-
dc.description.citedreferenceGovindan RM, 2008, PEDIATR NEUROL, V38, P27, DOI 10.1016/j.pediatrneurol.2007.08.004-
dc.description.citedreferenceBanks SJ, 2007, SOC COGN AFFECT NEUR, V2, P303, DOI 10.1093/scan/nsm029-
dc.description.citedreferenceTang YY, 2007, P NATL ACAD SCI USA, V104, P17152-
dc.description.citedreferenceYoo SY, 2007, ACTA PSYCHIAT SCAND, V116, P211, DOI 10.1111/j.1600-0447.2007.01046.x-
dc.description.citedreferenceCoccaro EF, 2007, BIOL PSYCHIAT, V62, P168, DOI 10.1016/j.biopsych.2006.08.024-
dc.description.citedreferenceWakana S, 2007, NEUROIMAGE, V36, P630, DOI 10.1016/j.neuroimage.2007.02.049-
dc.description.citedreferenceCamara E, 2007, NEUROIMAGE, V34, P1588, DOI 10.1016/j.neuroimage.2006.09.045-
dc.description.citedreferenceCampitelli G, 2007, INT J NEUROSCI, V117, P1641, DOI 10.1080/00207450601041955-
dc.description.citedreferenceParris BA, 2007, J COGNITIVE NEUROSCI, V19, P13-
dc.description.citedreferenceBeer JS, 2006, J COGNITIVE NEUROSCI, V18, P871-
dc.description.citedreferenceJiang HY, 2006, COMPUT METH PROG BIO, V81, P106, DOI 10.1016/j.cmpb.2005.08.004-
dc.description.citedreferenceMonchi O, 2006, ANN NEUROL, V59, P257, DOI 10.1002/ana.20742-
dc.description.citedreferenceSchlosser RGM, 2006, NEUROSCIENCE, V139, P91, DOI 10.1016/j.neuroscience.2005.06.037-
dc.description.citedreferenceLazar SW, 2005, NEUROREPORT, V16, P1893-
dc.description.citedreferenceBengtsson SL, 2005, NAT NEUROSCI, V8, P1148, DOI 10.1038/nn1516-
dc.description.citedreferenceJones DK, 2005, NEUROIMAGE, V26, P546, DOI 10.1016/j.neuroimage.2005.02.013-
dc.description.citedreferenceOwen AM, 2005, HUM BRAIN MAPP, V25, P46, DOI 10.1002/hbm.20131-
dc.description.citedreferenceMORI S, 2005, MRI ATLAS HUMAN WHIT-
dc.description.citedreferenceHinton SC, 2004, COGNITIVE BRAIN RES, V21, P171, DOI 10.1016/j.cogbrainres.2004.08.005-
dc.description.citedreferenceKondo H, 2004, NEUROIMAGE, V21, P2, DOI 10.1016/j.neuroimage.2003.09.046-
dc.description.citedreferenceBaudewig J, 2003, MAGN RESON IMAGING, V21, P1121, DOI 10.1016/j.mri.2003.08.013-
dc.description.citedreferenceFerrandez AM, 2003, NEUROIMAGE, V19, P1532, DOI 10.1016/S1053-8119(03)00159-9-
dc.description.citedreferenceChen XC, 2003, COGNITIVE BRAIN RES, V16, P32-
dc.description.citedreferenceAtherton M, 2003, COGNITIVE BRAIN RES, V16, P26-
dc.description.citedreferenceBundesen C, 2002, EXP BRAIN RES, V147, P394, DOI 10.1007/s00221-002-1243-1-
dc.description.citedreferenceBarrett L, 2002, TRENDS COGN SCI, V6, P499-
dc.description.citedreferenceBasser PJ, 2002, NMR BIOMED, V15, P456, DOI 10.1002/nbm.783-
dc.description.citedreferenceAmidzic O, 2001, NATURE, V412, P603-
dc.description.citedreferenceGood CD, 2001, NEUROIMAGE, V14, P21, DOI 10.1006/nimg.2001.0786-
dc.description.citedreferenceCasey BJ, 2000, BIOL PSYCHOL, V54, P241-
dc.description.citedreferenceDuncan J, 2000, SCIENCE, V289, P457-
dc.description.citedreferenceSternberg RJ, 2000, SCIENCE, V289, P399-
dc.description.citedreferenceCabeza R, 2000, J COGNITIVE NEUROSCI, V12, P1-
dc.description.citedreferenceGitelman DR, 1999, BRAIN, V122, P1093-
dc.description.citedreferenceYOSHIKAWA A, 1999, LECT NOTES COMPUT SC, V1588, P282-
dc.description.citedreferenceKIM ZS, 1995, KOREAN J CLIN PSYCHO, V14, P111-
dc.description.citedreferenceCOON H, 1989, BEHAV GENET, V19, P183-
dc.description.citedreferenceTALAIRACH J, 1988, COPLANAR STEREOTAXIC-
dc.description.tc6-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share