Publications

Detailed Information

Neuronal nitric oxide synthase in hypertension – an update

DC Field Value Language
dc.contributor.authorZhang, Yin H-
dc.date.accessioned2017-02-01T02:29:53Z-
dc.date.available2017-02-01T02:29:53Z-
dc.date.issued2016-11-03-
dc.identifier.citationClinical Hypertension, 22(1):20ko_KR
dc.identifier.urihttps://hdl.handle.net/10371/100351-
dc.descriptionThis article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license.
ko_KR
dc.description.abstractAbstract
Hypertension is a prevalent condition worldwide and is the key risk factor for fatal cardiovascular complications, such as stroke, sudden cardiac death and heart failure. Reduced bioavailability of nitric oxide (NO) in the endothelium is an important precursor for impaired vasodilation and hypertension. In the heart, NO deficiency deteriorates the adverse consequences of pressure-overload and causes cardiac hypertrophy, fibrosis and myocardial infarction which lead to fatal heart failure and sudden cardiac death. Recent consensus is that both endothelial and neuronal nitric oxide synthases (eNOS or NOS3 and nNOS or NOS1) are the constitutive sources of NO in the myocardium. Between the two, nNOS is the predominant isoform of NOS that controls intracellular Ca2+ homeostasis, myocyte contraction, relaxation and signaling pathways including nitroso-redox balance. Notably, our recent research indicates that cardiac eNOS protein is reduced but nNOS protein expression and activity are increased in hypertension. Furthermore, nNOS is induced by the interplay between angiotensin II (Ang II) type 1 receptor (AT1R) and Ang II type 2 receptor (AT2R), mediated by NADPH oxidase and reactive oxygen species (ROS)-dependent eNOS activity in cardiac myocytes. nNOS, in turn, protects the heart from pathogenesis via positive lusitropy in hypertension. Soluble guanylate cyclase (sGC)-cGMP/PKG-dependent phosphorylation of myofilament proteins are novel targets of nNOS in hypertensive myocardium. In this short review, we will endeavor to overview new findings ofthe up-stream and downstream regulation of cardiac nNOS in hypertension, shed light on the underlying mechanisms which may be of therapeutic value in hypertensive cardiomyopathy.
ko_KR
dc.language.isoenko_KR
dc.publisherBioMed Centralko_KR
dc.subjectHypertensionko_KR
dc.subjectNitric oxideko_KR
dc.subjectNeuronal nitric oxide synthase (nNOS)ko_KR
dc.subjectCardiomyocyteko_KR
dc.subjectHypertrophyko_KR
dc.titleNeuronal nitric oxide synthase in hypertension – an updateko_KR
dc.typeArticleko_KR
dc.identifier.doi10.1186/s40885-016-0055-8-
dc.language.rfc3066en-
dc.rights.holderThe Author(s).-
dc.date.updated2017-01-06T10:56:56Z-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share