Browse

Trichostatin A enhances acetylation as well as protein stability of ERα through induction of p300 protein

Cited 49 time in Web of Science Cited 53 time in Scopus
Authors
Kim, Sung-Hye; Kang, Hyun-Jin; Na, Hyelin; Lee, Mi-Ock
Issue Date
2010-04-13
Publisher
BioMed Central
Citation
Breast Cancer Research, 12(2):R22
Description
This is an open access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Abstract
Abstract

Introduction
Trichostatin A (TSA) is a well-characterized histone deacetylase (HDAC) inhibitor. TSA modifies the balance between HDAC and histone acetyltransferase activities that is important in chromatin remodeling and gene expression. Although several previous studies have demonstrated the role of TSA in regulation of estrogen receptor alpha (ERα), the precise mechanism by which TSA affects ERα activity remains unclear.


Methods
Transient transfection was performed using the Welfect-EX™Plus procedure. The mRNA expression was determined using RT-PCR. Protein expression and interaction were determined by western blotting and immunoprecipitation. The transfection of siRNAs was performed using the Oligofectamine™ reagent procedure.


Results
TSA treatment increased acetylation of ERα in a dose-dependent manner. The TSA-induced acetylation of ERα was accompanied by an increased stability of ERα protein. Interestingly, TSA also increased the acetylation and the stability of p300 protein. Overexpression of p300 induced acetylation and stability of ERα by blocking ubiquitination. Knockdown of p300 by RNA interference decreased acetylation as well as the protein level of ERα, indicating that p300 mediated the TSA-induced stabilization of ERα.


Conclusions
We report that TSA enhanced acetylation as well as the stability of the ERα protein by modulating stability of p300. These results may provide the molecular basis for pharmacological functions of HDAC inhibitors in the treatment of human breast cancer.
Language
English
URI
https://hdl.handle.net/10371/100407
DOI
https://doi.org/10.1186/bcr2562
Files in This Item:
Appears in Collections:
College of Pharmacy (약학대학)Dept. of Pharmacy (약학과)Journal Papers (저널논문_약학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse