Browse

DNA methylation and smoking in Korean adults: epigenome-wide association study

Cited 29 time in Web of Science Cited 25 time in Scopus
Authors
Lee, Mi Kyeong; Hong, Yoonki; Kim, Sun-Young; London, Stephanie J.; Kim, Woo Jin
Issue Date
2016-09-22
Publisher
BioMed Central
Citation
Clinical Epigenetics, 8(1):103
Keywords
DNA methylationSmokingEpigenome-wide association studyCotinineDuration of smoking cessationGene expression
Description
This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.
Abstract
Abstract

Background
Exposure to cigarette smoking can increase the risk of cancers and cardiovascular and pulmonary diseases. However, the underlying mechanisms of how smoking contributes to disease risks are not completely understood. Epigenome-wide association studies (EWASs), mostly in non-Asian populations, have been conducted to identify smoking-associated methylation alterations at individual probes. There are few data on regional methylation changes in relation to smoking. Few data link differential methylation in blood to differential gene expression in lung tissue.


Results
We identified 108 significant (false discovery rate (FDR) < 0.05) differentially methylated probes (DMPs) and 87 significant differentially methylated regions (DMRs) (multiple-testing corrected p < 0.01) in current compared to never smokers from our EWAS of cotinine-validated smoking in blood DNA from a Korean chronic obstructive pulmonary disease cohort (n = 100 including 31 current, 30 former, and 39 never smokers) using Illumina HumanMethylation450 BeadChip. Of the 108 DMPs (FDR < 0.05), nine CpGs were statistically significant based on Bonferroni correction and 93 were novel including five that mapped to loci previously associated with smoking. Of the 87 DMRs, 66 were mapped to novel loci. Methylation correlated with urine cotinine levels in current smokers at six DMPs, with pack-years in current smokers at six DMPs, and with duration of smoking cessation in former smokers at eight DMPs. Of the 143 genes to which our significant DMPs or DMRs annotated, gene expression levels at 20 genes were associated with pack-years in lung tissue transcriptome data of smokers (Asan Biobank, n = 188).


Conclusions
Our study of differential methylation in Koreans confirmed previous findings from non-Asian populations and revealed novel loci in relation to smoking. Smoking-related differential methylation in blood is associated with gene expression in lung tissue, an important target of adverse health effects of smoking, supporting the potential functional importance of methylation in smoking-related disease.
Language
English
URI
https://hdl.handle.net/10371/100428
DOI
https://doi.org/10.1186/s13148-016-0266-6
Files in This Item:
Appears in Collections:
Graduate School of Public Health (보건대학원)Dept. of Environmental Health (환경보건학과)Journal Papers (저널논문_환경보건학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse