5-lipoxygenase mediates docosahexaenoyl ethanolamide and N-arachidonoyl-L-alanine-induced reactive oxygen species production and inhibition of proliferation of head and neck squamous cell carcinoma cells

Cited 12 time in Web of Science Cited 14 time in Scopus
Park, Seok-Woo; Hah, J. Hun; Oh, Sang-Mi; Jeong, Woo-Jin; Sung, Myung-Whun
Issue Date
BioMed Central
BMC Cancer, 16(1):458
EndocannabinoidDHEANALA5-lipoxygenaseROSHead and neck cancer
This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (, which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Endocannabinoids have recently drawn attention as promising anti-cancer agents. We previously observed that anandamide (AEA), one of the representative endocannabinoids, effectively inhibited the proliferation of head and neck squamous cell carcinoma (HNSCC) cell lines in a receptor-independent manner. In this study, using HNSCC cell lines, we examined the anti-cancer effects and the mechanisms of action of docosahexaenoyl ethanolamide (DHEA) and N-arachidonoyl-L-alanine (NALA), which are polyunsaturated fatty acid (PUFA)-based ethanolamides like AEA.

Methods and Results
DHEA and NALA were found to effectively inhibit HNSCC cell proliferation. These anti-proliferative effects seemed to be mediated in a cannabinoid receptor-independent manner, since the antagonist of cannabinoid receptor-1 (CB1) and vanilloid receptor-1 (VR1), two endocannabinoid receptors, did not reverse the ability of DHEA and NALA to induce cell death. Instead, we observed an increase in reactive oxygen species (ROS) production and a decrease of phosphorylated Akt as a result of DHEA and NALA treatment. Antioxidants efficiently reversed the inhibition of cell proliferation and the decrease of phosphorylated Akt induced by DHEA and NALA; inhibition of 5-lipoxygenase (5-LO), which is expected to be involved in DHEA- and NALA-degradation pathway, also partially blocked the ability of DHEA and NALA to inhibit cell proliferation and phosphorylated Akt. Interestingly, ROS production as a result of DHEA and NALA treatment was decreased by inhibition of 5-LO.

From these findings, we suggest that ROS production induced by the 5-LO pathway mediates the anti-cancer effects of DHEA and NALA on HNSCC cells. Finally, our findings suggest the possibility of a new cancer-specific therapeutic strategy, which utilizes 5-LO activity rather than inhibiting it.
Files in This Item:
Appears in Collections:
College of Medicine/School of Medicine (의과대학/대학원)Dept. of Medicine (의학과)Journal Papers (저널논문_의학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.