Browse

TMEM106B, a frontotemporal lobar dementia (FTLD) modifier, associates with FTD-3-linked CHMP2B, a complex of ESCRT-III

Cited 23 time in Web of Science Cited 21 time in Scopus
Authors

Jun, Mi-Hee; Han, Jeong-Ho; Lee, Yu-Kyung; Jang, Deok-Jin; Kaang, Bong-Kiun; Lee, Jin-A

Issue Date
2015-12-10
Publisher
BioMed Central
Citation
Molecular Brain, 8(1):85
Keywords
TMEM106BESCRTCHMP2BFTLDEGFRautophagy
Abstract
Background
Transmembrane protein 106B (TMEM106B) has been identified as a risk factor for frontotemporal lobar degeneration, which is the second most common form of progressive dementia in people under 65years of age. Mutations in charged multivesicular body protein 2B (CHMP2B), which is involved in endosomal protein trafficking, have been found in chromosome 3-linked frontotemporal dementia. Despite the number of studies on both CHMP2B and TMEM106B in the endolysosomal pathway, little is known about the relationship between CHMP2B and TMEM106B in the endosomal/autophagy pathway.

Results
This study found that endogenous TMEM106B was partially sequestered in CHMP2B-positive structures, suggesting its possible involvement in endosomal sorting complexes required for transport (ESCRT)-associated pathways. The role of single nucleotide polymorphisms of TMEM106B (T185, S185, or S134N) in the ESCRT-associated pathways were characterized. The T185 and S185 variants were more localized to Rab5-/Rab7-positive endosomes compared with S134N, while all of the variants were more localized to Rab7-positive endosomes compared to Rab5-positive endosomes. T185 was more associated with CHMP2B compared to S185. Autophagic flux was slightly reduced in the T185-expressing cells compared to the control or S185-expressing cells. Moreover, T185 slightly enhanced the accumulation of EGFR, impairments in autophagic flux, and neurotoxicity that were caused by CHMP2BIntron5 compared to S185-expressing cells.

Conclusions
These findings suggest that the T185 variant functions as a risk factor in neurodegeneration with endolysosomal defects. This study provides a better understanding of pathogenic functions of TMEM106B, which is a risk factor for the progression of neurodegenerative diseases that are associated with endosomal defects in the aged brain.
Language
English
URI
https://hdl.handle.net/10371/109822
DOI
https://doi.org/10.1186/s13041-015-0177-z
Files in This Item:
Appears in Collections:
College of Natural Sciences (자연과학대학)Dept. of Biological Sciences (생명과학부)Journal Papers (저널논문_생명과학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse