Publications

Detailed Information

Fabrication and Performance of A New-Concept-Energy-Device: BatCap : 새로운 개념의 에너지 저장 디바이스 배트캡의 제조와 성능에 관한 연구

DC Field Value Language
dc.contributor.advisor박종래-
dc.contributor.author최홍수-
dc.date.accessioned2017-07-13T05:38:28Z-
dc.date.available2017-07-13T05:38:28Z-
dc.date.issued2013-08-
dc.identifier.other000000012912-
dc.identifier.urihttps://hdl.handle.net/10371/117913-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 재료공학부, 2013. 8. 박종래.-
dc.description.abstract에너지 저장 기술은, 화석연료의 사용에 의한 지구 온난화, 화석연료 자원의 고갈, 그리고 환경 오염으로 대표되는 에너지 위기를 해결하고, 스마트폰, 테블릿, 그리고 전기자동차와 같이 고성능을 요구하는 전자기기들의 발전에 대응하기 위한 매우 중요한 기술이다. 다양한 에너지 저장 시스템들 중에서, 전기화학 에너지 저장 매체는 화석연료에 기반하는 에너지 체계를 대체할 수 있는 효율적인 전기 에너지 저장 기술로써 많은 관심을 받고 있다. 지난 20년간, 대표적인 전기화학 에너지 저장 매체인 리튬 이온 배터리와 수퍼캐패시터에 관한 수많은 연구가 이루어져 왔으나, 새로운 관련 시장 및 산업계의 요구를 충족시키기 위해 좀 더 향상된 전기화학적 성능이 요구되고 있는 실정이다.
본 연구에서는, 고성능 에너지 저장 대안 기술로써, 새로운 개념의 에너지 저장 매체인 배트캡(BatCap)시스템을 제안하고자 한다. 배트캡 시스템은, 하나의 전극에 배터리와 캐패시터 구성요소가 복합화 되어 있는 열린 공극 구조의 배트캡 전극으로 구성되어 있으며, 이로 인하여 배터리와 캐패시터 구성요소에 의한 상승작용을 기대할 수 있다. 구체적으로, 배터리 구성요소의 뛰어난 전기화학 에너지 저장 능력과, 공극 구조와 캐패시터 구성요소에 의한 전하전달 속도 향상을 통해 배트캡 시스템의 전기화학적 성능이 향상될 수 있다. 이 연구의 목적은 첫째, 고성능 에너지 저장 대안 기술로서, 새로운 개념의 전기화학 에너지 저장 매체인 배트캡(BatCap)시스템을 제안하고, 둘째, 이에 대한 이론모델을 제안하면서 기존의 배터리-캐패시터 복합 시스템들과의 성능을 이론적으로 비교하였다. 나아가 셋째, 배트캡 시스템에 부합하는 음극 및 양극 물질 합성, 물성 분석, 전기화학적 성능을 분석함으로써, 배트캡 시스템의 대안 에너지 저장 시스템으로서의 가능성에 대해 고찰하고자 하였다.
1부에서는 에너지 저장 매체에 대한 전반적인 소개를 통해 대표적인 에너지 저장 매체인 리튬 이차 배터리 및 수퍼캐패시터에 대한 연구를 소개하고, 에너지 밀도-출력 밀도 간 성능 트레이드 오프(trade-off) 관점에서 이들 에너지 저장 매체들의 기술상황 및 과제들에 대해 분석하였으며, 이를 통해서 새로운 에너지 저장 매체인, 배트캡 시스템의 필요성에 대해 살폈다.
2부에서는 다양한 에너지 저장 시스템들을 전극의 대칭성과 전해질의 종류를 기준으로 분류하고, 각각의 에너지 밀도 및 출력 밀도를 이론적으로 계산하였으며, 전기화학적 성능 비교를 위해 다양한 요소와 이들과 관련된 계수를 도입하여 시스템 구성 조건에 따른 성능에 대해 고찰하였다. 이를 통해서, 기존의 복합 전기화학 에너지 저장 매체에 비해, 배트캡이 상대적으로 향상된 전기화학적 성능을 가지는 것을 확인하였다.
3부와 4부에서는 각각 배트캡 시스템의 음극재 및 양극재를, 2부에서 제시된 이론에 맞춰 설계하고 그 성능을 측정하였다. 그 결과 이론을 통해 예측한대로, 배트캡 시스템은 배터리와 수퍼캐패시터의 시너지적 융합효과를 발휘하는 새로운 개념의 전기에너지 저장 시스템임을 확인하였다.
결과적으로, 이 연구를 통해서 이론적 고찰을 바탕으로 기존의 전기화학 에너지 저장 장치를 대체할 수 있는 진보된 형태의 배트캡 시스템을 제시하고, 형상 조절 및 나노크기의 배터리 구성요소/캐패시터 구성요소의 복합화를 통해 이에 부합하는 배트캡 물질을 합성하였으며, 이를 통해 배트캡 시스템의 새로운 전기화학 에너지 저장 매체로서의 가능성을 확인할 수 있었다.
-
dc.description.abstractEnergy storage technologies have been concerned as the key not only to overcome the energy crisis including global warming, resource exhaustion, and environmental pollution, which problems are originated from the fossil fuel, but also confront the demands for high-performance electrical devices, such as smartphone, tablet, electric vehicles (EVs), etc. Among the many candidate energy storage systems, electrochemical energy storage devices have attracted the significant interests for effective electrical energy storage technology to alternate the fossil fuel-dependent energy system and operate portable electrical devices and EVs. There have been great attention and many researches over the past two decades, however, typical electrochemical energy storage devices including lithium ion batteries (LIBs) and supercapacitors are required to enhance the electrochemical performances for meeting the needs of new markets and global industries. Therefore, a new energy storage system is required to satisfy the demands for high-performance electrochemical energy storage device which can be an alternative to LIBs and supercapacitors.
In this thesis, a new concept of energy storage devices, BatCap system, is suggested as an alternative to high-performance energy storage technology. The BatCap system is composed of BatCap electrodes consisting of battery and capacitor component hybrids in a single electrode with open porous structure, which gives a synergetic effect on the electrochemical performances of the device. Large amount of storable electrochemical energy from a battery component can improve the energy density of the BatCap system. Also, outstanding charge transport from the capacitor component and 3D open porous structure complement the high rate capability of the battery component with additional storable energy. The aims of this study were to introduce the theoretical approach for the BatCap system with comparison of performance between a typical battery-capacitor hybrid system, design the negative/positive electrode materials for the BatCap system with material characterization, and analyze the electrochemical performances of each material used in the BatCap system.
Part I provides a general introduction of energy storage devices regarding the requirements for the new energy device, BatCap. LIBs and supercapacitors are summarized with energy storage mechanism, performance parameters, and performance influencing factors of each device. Also, main challenges and issues of the advanced energy storage devices are indicated by means of trade-off on the performances followed by the state of the art analysis. Throughout this part, the aim and scope of this research are introduced, which are theoretical study, synthesis, and characterization of the BatCap electrode materials.
Part II presents a theoretical study of the BatCap system in comparison with the performance between typical hybrid energy storage systems. Various energy storage systems are classified with the symmetry of the electrodes (symmetric/asymmetric), and the types of electrolytes (aqueous/organic). Energy density and power density of each system are theoretically calculated using various factors and coefficients for performance comparison. Then, theoretical modeling for the BatCap system is conducted to indicate the electrochemical performance of this new concept device followed by consideration of ideal structure of the BatCap electrode material. Conclusively, this part successively indicates the performance of each energy storage system depending on the specified conditions and advantages of the BatCap system compared to the typical energy storage systems.
Part III discusses the preparation and characterization of hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets and Li4Ti5O12/activated carbon hybrid nanotubes for the negative electrode of the BatCap system. 1D fiburous or tubular structures are chosen as the basic units for 3D open porous structure prepared by electrospinning. Also, Li4Ti5O12 and carbonaceous materials are employed as the battery and capacitor components, respectively, due to its great cycle stability and electronic conductivity.
Part IV discusses the preparation and characterization of sulfur-carbon nanosheet hybrids and graphene/carbon nanotube (CNT)-sulfur hybrid aerogel for the positive electrode of the BatCap system. 2D nanoplate structures, obtained by solid-solvothermal reaction for the sulfur-carbon nanosheet hybrids and by hydrothermal reduction for the graphene/CNT-sulfur hybrid aerogel, are employed as the basic units for 3D open porous structure. Cycle stability and rate capability of sulfur, which is capable of storing large amount of energy, are improved by hybridization with carbon nanosheet and graphene/CNT.
BatCap electrode materials in parts III and IV show improved electrochemical behaviors, which the enhancements are attributed to the better charge transfer kinetics through morphology control and hybridization of nanosized battery and capacitor components. They illustrate typical charge/discharge potential profiles of the BatCap electrode shown in part II of theoretical modeling and calculation. The enhanced electrochemical performances compared to typical energy storage systems summarized in part V clearly show the potential of the BatCap system as a new alternative for electrochemical energy device.
-
dc.description.tableofcontentsPart I Basic research needs of the new energy storage system 1

Chapter 1 Introduction 2
1.1 General introduction to energy storage devices 2
1.1.1 Overview of energy storage devices 4
1.1.2 Demand for high-performance energy storage devices 4
1.2 Fundamentals of energy storage devices 7
1.2.1 Lithium ion batteries and supercapacitors 7
1.2.2 Energy storage mechanism of energy storage devices 8
1.2.2.1 Working mechanism of LIBs and supercapacitors 8
1.2.2.2 Strengths and weaknesses of LIBs and supercapacitors 13
1.2.3 Performance parameters of energy storage devices 16
1.2.3.1 Energy density 16
1.2.3.2 Power density 17
1.2.3.3 Cycle stability 18
1.2.4 Factors influencing the performance of energy storage devices 20
1.2.4.1 Charges conductivities 20
1.2.4.2 Quantity of storable charge 22
1.2.4.3 Charge/discharge reaction potential 23
1.2.4.4 Microstructural change of the active material 24
1.3 Main challenges and issues related to advanced energy storage devices 26
1.3.1 Performance trade-off : energy density and power density 26
1.3.2 Performance trade-off : the storable charge quantity and cycle stability 28
1.4 State of the art of advanced energy storage devices 30
1.4.1 Approaches to enhance LIBs 30
1.4.1.1 Improving the power density 30
1.4.1.2 Improving the cycle stability 33
1.4.2 Approach to enhance supercapacitors 36
1.4.2.1 Improving the energy density 36
1.4.3 Battery-supercapacitor hybridization 40
1.4.3.1 Asymmetric electrode system 42
1.4.3.2 Introduction of a Li-ion organic electrolyte 44
1.5 Aim and scope of this research 46
1.5.1 Theoretical study of the BatCap system as an advanced energy storage device 46
1.5.2 Synthesis and characterization of the BatCap electrode materials 48
1.6 References 49

Part II Fundamental study for the BatCap system 56

Chapter 2 Theoretical approach and prediction of the BatCap system 57
2.0 Major symbols 57
2.1 Introduction 63
2.2 Theoretical comparison of typical capacitor systems 66
2.2.1 A symmetric capacitor system and an asymmetric capacitor system with an aqueous electrolyte 66
2.2.2 A symmetric capacitor system and an asymmetric capacitor system with an organic electrolyte 82
2.3 New concept of an electrode system: BatCap electrode 91
2.3.1 Concept of the BatCap electrode 91
2.3.2 Theoretical study of the BatCap electrode 93
2.3.3 Conditions of the electrode material for the BatCap system 106
2.3.4 Comparison of asymmetric capacitor and BatCap electrode system 110
2.4 Conclusions 114
2.5 Appendix 116
2.6 References 124

Part III Negative electrodes for the BatCap system

Chapter 3 Preparation and Electrochemical Performance of Hyper-networked Li4Ti5O12/Carbon Hybrid Nanofiber Sheets for a Negative Electrode of the BatCap System 131
3.1 Introduction 131
3.2 Experimental 135
3.2.1 Reagents and chemicals 135
3.2.2 Synthesis of LTO/C-HNS 135
3.2.3 Characterization of LTO/C-HNS 136
3.2.4 Electrochemical tests of LTO/C-HNS 136
3.3 Results and discussion 139
3.3.1 Morphological, microstructural, and surface characteristics of LTO/C-HNS series 139
3.3.2 Electrochemical performance of LTO/C-HNS series 148
3.4 Conclusions 158
3.5 References 159

Chapter 4 Preparation and Electrochemical Performance of Li4Ti5O12–Activated Carbon Hybrid Nanotubes for a Negative Electrode of the BatCap System 164
4.1 Introduction 164
4.2 Experimental 168
4.2.1 Reagents and chemicals 168
4.2.2 Synthesis of LTO–AC hybrid nanotubes 168
4.2.3 Characterization of LTO–AC hybrid nanotubes 169
4.2.4 Electrochemical tests of LTO–AC hybrid nanotubes 169
4.3 Results and discussion 172
4.3.1 Microstructural and morphological characteristics of LTO–AC hybrid nanotubes 172
4.3.2 Surface characteristics of LTO–AC hybrid nanotubes 179
4.3.3 Electrochemical performances of LTO–AC hybrid nanotubes 187
4.4 Conclusions 209
4.5 Appendix 210
4.6 References 220

Part IV Positive electrodes for the BatCap system 225

Chapter 5 Preparation and Electrochemical Performance of Sulfur-Carbon Nanosheet Hybrids via a Solid Solvothermal Reaction for a Positive Electrode of the BatCap System 226
5.1 Introduction 226
5.2 Experimental 229
5.2.1 Reagents and chemicals 229
5.2.2 Synthesis of SCNH 229
5.2.3 Characterization of SCNH 229
5.2.4 Electrochemical tests of SCNH 230
5.3 Results and discussion 232
5.3.1 Microstructural and morphological characteristics of SCNH 232
5.3.2 Surface characteristics of SCNH 235
5.3.3 Electrochemical performances of SCNH 240
5.4 Conclusions 250
5.5 References 251

Chapter 6 Preparation and Electrochemical Performance of a Graphene/CNT-Sulfur Hybrid Aerogel via a One-step Hydrothermal Reaction for a Positive Electrode of the BatCap System 255
6.1 Introduction 255
6.2 Experimental 259
6.2.1 Reagents and chemicals 259
6.2.2 Synthesis of the GCSH aerogel 259
6.2.3 Characterization of the GCSH aerogel 260
6.2.4 Electrochemical tests of the GCSH aerogel 261
6.3 Results and discussion 262
6.3.1 Microstructural and morphological characteristics of the GCSH aerogel 262
6.3.2 Surface characteristics of the GCSH aerogel 269
6.3.3 Electrochemical performance of the GCSH aerogel 273
6.4 Conclusions 279
6.5 References 280

Part V Conclusions 283

Chapter 7 Conclusive remarks and the outlook 284
-
dc.formatapplication/pdf-
dc.format.extent4836433 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectElectrochemistry-
dc.subjectBatCap system-
dc.subjectLithium ion batteries-
dc.subjectSupercapacitors-
dc.subjectAsymmetric electrode system-
dc.subjectLithium titanium oxide-
dc.subjectSulfur-
dc.subjectGraphene-
dc.subjectCarbon nanotube-
dc.subject.ddc620-
dc.titleFabrication and Performance of A New-Concept-Energy-Device: BatCap-
dc.title.alternative새로운 개념의 에너지 저장 디바이스 배트캡의 제조와 성능에 관한 연구-
dc.typeThesis-
dc.contributor.AlternativeAuthorChoi, Hong Soo-
dc.description.degreeDoctor-
dc.citation.pagesxxiv, 289-
dc.contributor.affiliation공과대학 재료공학부-
dc.date.awarded2013-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share