Browse

Study on Global Particle Balance Model for Plasma Density Feedback Control in KSTAR
KSTAR 플라즈마 밀도 제어를 위한 전입자균형방정식 모델에 관한 연구

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
전준우
Advisor
황용석
Major
공과대학 에너지시스템공학부
Issue Date
2013-08
Publisher
서울대학교 대학원
Keywords
Plasma Density ControlPlasma Density ModelDelayed Desorption
Description
학위논문 (박사)-- 서울대학교 대학원 : 에너지시스템공학부, 2013. 8. 황용석.
Abstract
한국초전도핵융합연구장치(Korea Superconducting Tokamak Advanced Research,
이하 KSTAR)와 같은 장시간운전이 가능한 장치에서는 지속적인 플라
즈마 밀도의 실시간 되먹임 제어가 반드시 필요하다. 제어기 설계를 효율적으
로진행하기위해서는플라즈마의상태를적절하게기술하는모델이필요한데
특히 플라즈마의 밀도 반응의 경우는 플라즈마 전하들의 재활용 (recycling, 이
하리사이클링)의효과가큰영향을미친다.따라서밀도변화의모델링은이러
한 리사이클링 혹은 플라즈마와 내벽간의 반응을 올바르게 기술하여야 한다.
이를위해최근에Maddison에의해제안된중수소분자의리사이클까지고려한
모델을바탕으로KSTAR의실험결과를재현하였다.이때KSTAR와같은수초
이상의 장시간 운전의 경우 기존 모델에서 적절한 결과를 도출할 수 없었는데
이에 대한 문제는 중수소 분자의 지체탈착시간 (τw)을 도입함으로써 해결이
가능하다. 이를 통해 방전 전류가 지속적으로 유지되는 전체 기간동안 핵융합
플라즈마의밀도를 정량적으로재현할 수있는 모델을처음으로 설립하였다.
이러한모델에서도출한파라미터는각각의영향이완벽히독립적이지않
기때문에일정량의불확실성을가지는데특히플라즈마밀도의가둠시간인τi
와 중수소 분자의 즉각적인 재방출이 되는 정도를 의미하는 δD 의 경우 그에
대한 영향을 직접적으로 구분하는 것이 매우 힘들다. 따라서 기존의 밀도 데이
터 이 외에 다른 진단 데이터를 활용하여 이를 구분하여야 하는데 본 연구의
경우 정전탐침법을 활용한 이온입자속을 모델의 데이터와 비교함으로써 가능
하였다.기존의밀도데이터만활용하였을경우수치적으로가능한τi의범위가
10-120ms에 달하는 반면, 이온입자속을 함께 고려한 경우 약 15ms-35ms의 범
위로한정되는것을확인하였다.이를유럽연합의공동핵융합연구장치인JET
147
에서 도출된 결과와 비교하면 약 18-37ms의 경우로 예측되므로 서로 일치하는
결과를 얻을수 있었다.
이렇게 얻어낸 인자들을 모델기반 제어기 설계를 위하여 선형화된 전달
함수를 구할 수 있다. 전달함수에서 도출되는 특성값인 zero와 pole을 제어파
라미터인 τI , τP를 활용하여 삭제할 경우 되먹임제어의 동작 결과를 여러 플라
즈마 인자의 범위에 대해서 원하는 범위 내로 구할 수 있다. 예를 들어 오버슛
(Overshoot) 20% 이내와 안정시간 (settlement time) 1초 이내의 반응도를 얻을
수있음을 확인하였다.
결론적으로장시간운전에대한플라즈마밀도변화를정량적으로모사할
수 있는 물리적인 모델을 최초로 도출하고 이로부터 여러 플라즈마 인자의 변
화에 대해 안정적으로 원하는 반응도를 얻을 수 있는 모델기반 되먹임제어기
설계를달성하였다.
Real-time control of plasma density is of particular importance in achieving not
only steady-state operation but machine efficiency for various scientific researches
with less time and resource. A global particle model has been established for the
model based controller design in Korea Superconducting Tokamak Advanced Research
or KSTAR. The model is based on one of the most comprehensive model,
proposed by Maddison and validated in Mega-Ampere Spherical Torus or MAST,
which however cannot be directly applicable for KSTAR experiment. The is mainly
due to much longer pulse of KSTAR compared with MAST. For the long pulse discharges,
such as KSTAR, the delayed recycling of retained fuels in the wall needs to
be included for successful modeling, which is evident from the particular observation
of density sustainment without any external fueling injection. By the improved
i
model, both dynamic response and equilibrium states of density waveform are reproduced
in an excellent agreement with the gas modulation experiments, less than 5%
average squared error for the entire Ip flattop period. The quantified reproduction of
long pulse discharges from the particle balance model is accomplished for the first
time in fusion plasmas.
However, some of the model parameters are under large uncertainties inherently
due to the superposed effect between different parameters such as τi and δD since
the pure transport loss in τi is hardly measurable without compensation of recycling
effect from δD. Thus another constraint needs to be participated in the modeling such
as ion saturation current I+
sat measurements from electric probe diagnostics. With the
diagnostic constraint, automatic tuning algorithm that minimizes errors of the model
from the experiments yield τi about 15−35ms for 0.3MA circular ohmic plasmas
which was originally obtained within 10−120ms. The refined range of τi is consistent
with ohmic limiter plasma scaling law, proposed in Joint European Tokamak or
JET, yielding 18−37ms. Remaining parameters can be also specified with fixed τi
at 25ms : core fueling efficiency fc, immediate molecular desorption coefficient δD
and particle residence time in the wall or delayed molecular desorption τw. In the
particular KSTAR experiments, they are individually determined as 33%, 0.44, and
0.72s respectively. The obtained parameters produce density waveform in excellent
agreement with both feedforward and feedback control experiments, provided similar
wall condition.
From the global particle balance model, a equivalent transfer function is evaluated
for designing robust PID controllers in various plasma and wall conditions.
For the purpose, gas injection algorithm is proposed to be changed from voltagerequested
control to flow-requested control in order to eliminate such large nonlinii
earity that stems from gas puffing rate upon operating piezo-valve voltage. As bypassing
the critical nonlinearity with direct flow control, designed controller with its
control parameters, proportional and integral gains GP and GI , and their characteristic
times τP and τI are able to cancel two zeros and a pole, provided the parameters remain
as same as previously determined. Designed controller with root-locus method,
performs feedback action in good quality in terms of transient responses such as
20% overshoot and 1s settlement time in wide range of parameter variation, confirming
robustness of the PI controller. If the plasma parameters alter by conditions of
plasma and wall, as moving zeros and poles subsequently to different positions, the
performance of the controller turns out to still remain successful, proved with both
time-domain solution of transfer function and direct numerical simulation of global
particle balance model.
In conclusion, a comprehensive global particle balance has been established with
delayed molecular desorption effect for relatively long pulse discharges in KSTAR
yielding excellent accuracy of the model compared with density waveform both in
gas modulation and feedback control. This is the first time achievement for fusion
plasmas in long pulse discharges of plasma density with quantitative accuracy. The
feedback control system can be linearized with direct flow-request control instead of
original voltage-request control scheme of plasma control system or PCS of KSTAR.
Thus the equivalent transfer function becomes valid, and root-locus method with the
model-based transfer function enables robust control of plasmas by canceling out
some zeros and poles with controller variables. The designed controller results in
desired performance for example 20% overshoot with 1s settlement time for various
iii
plasma and wall conditions.
Language
English
URI
https://hdl.handle.net/10371/118160
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Energy Systems Engineering (에너지시스템공학부)Theses (Ph.D. / Sc.D._에너지시스템공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse