Browse

Design and evaluation of LED-fishing lamp based on the analysis of biological responses of common squids : 오징어의 생물학적 광반응 해석을 통한 LED 집어등 설계 및 평가

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
정학근
Advisor
이정훈
Major
공과대학 기계항공공학부
Issue Date
2013-08
Publisher
서울대학교 대학원
Keywords
Light Emitting Diode (LED)Fishing LampCommon SquidBehavioral ResponseRetinular ResponseLight Distribution
Description
학위논문 (박사)-- 서울대학교 대학원 : 기계항공공학부, 2013. 8. 이정훈.
Abstract
어류의 경우 바다에서 살아가기 때문에 사람에 비해 빛에 민감한 반응을 하게 된다. 이런 반응으로 인해 플랑크톤이나 다양한 작은 어류들이 빛에 의해 모이게 되는데 이런 먹이를 좋아하는 어종들은 이 불빛 아래로 모여들게 되고 어선은 이를 포획하게 된다. 특히, 오징어, 다랑어, 고등어, 정어리 그리고 갈치와 같은 대부분의 생선은 주광성이며 집어등은 이러한 어류들의 광반응 특성을 이용하여 어업효율을 증대시킨다. 과거에는 횃불을 이용해 어군을 모으던 집어등은 과학기술이 발달함에 따라 백열등을 집어등으로 이용하기 시작했고 이후에는 백열등보다 수명이 긴 할로겐 등이 등장했다. 1980년부터는 가시광 방사효율이 높은 메탈핼라이드램프(MHL)를 사용하게 되었다. 이런 MHL 집어등을 이용하는 과정에서 어선의 특성상 석유를 이용하여 전기를 자가 발전하는데 MHL의 경우에는 개수가 늘어날 경우, 높은 전력을 요구하게 되고 결국에는 발전에 필요한 석유의 양은 기하급수적으로 늘어나게 된다.
우리나라를 비롯한 세계 각국에서는 연근해어업에서 발생되는 온실가스를 저감하고 조업기간 유류소모량의 많은 부분을 차지하고 있는 MHL을 대체할 새로운 집어시스템을 개발하고 있다. 이러한 집어시스템에 적합한 광원으로 내구성이 길고 필요파장만을 효과적으로 구현할 수 있는 LED가 관심의 대상이 되고 있으며 일본과 우리나라를 중심으로 LED집어등의 방사 및 수중투과 특성을 규명하고 이에 대한 다양한 방식의 집어등 개발과 어획효과 등에 대한 연구가 진행되고 있다. LED(Light Emitting Diode) 램프는 저 전력으로 집어 효율을 크게 높일 수 있다는 장점을 가지고 있다. 그 이유는 LED의 경우 빛이 한쪽방향으로만 방사되므로 해수면 방향으로 집속이 가능하고, 자외선, 적외선이 방출되지 않으며, 원하는 파장대의 빛을 선택적으로 얻을 수 있기 때문에 대상 어종인 오징어의 시감도를 극대화시킬 수 있는 파장대를 선택하고, 수중 투과율 높은 파장대의 빛을 사용 가능하여 효율을 높일 수 있다. 메탈핼라이드 집어등에 대비하여 LED 집어등의 경우 광 에너지 변환 효율 0.5배, 유효방사효율 5배, 청색광 성분 5배를 고려하면 이론적으로는 효율은 10배 이상으로 계산된다.
본 연구에서는 LED 빛에 대한 오징어의 행동반응 및 망막 운동 실험을 통해 집어등 램프에 적합한 최적의 파장을 연구, 해상에서의 투과율 및 현장조업 실험을 고려한 LED 집어등의 배광 연구 등을 위주로 에너지 절약형 LED 집어등에 대한 연구를 수행하였다. 지금까지의 LED 집어등 연구가 상업화되지 못했던 이유는 투과율 특성만을 강조하여 청색의 LED를 사용하여 깊이 투과시키는 데 목적을 두었기 때문에 기존의 메탈핼라이드 램프를 사용할 때에 비하여 상당히 좁은 영역에만 빛을 조명하는 문제점을 가지고 있었다. 그러나 야간에 자연적으로 부상하는 오징어를 유도하기 위해서는 넓은 영역을 조명해야 하는 필요가 있으므로, 본 연구에서는 원거리용과 근거리용 집어램프를 병용하여 사용함으로써, 작업 초기에는 근거리용 집어 램프를 이용하여 수심 깊게 침투가 가능한 광의 파장 및 분포를 만들고, 시간이 지남에 따라서 넓은 영역의 조명이 가능하도록 원거리용 집어 램프를 사용하여 넓은 영역에 빛을 조명시키는 파장 및 배광을 만드는 집어등을 개발하였다.
LED 집어등은 초기 설치비용은 기존의 메탈핼라이드등에 비해 높지만 유지비가 거의 들지 않으므로 어획 효과만 입증되면 빠른 확산이 가능할 것으로 예상된다. 특히, LED의 수명은 기존의 메탈핼라이드등에 비해 약 10배 이상이며, 집어등 앞면으로의 열전달이 낮아 열충격에 의한 파손이 거의 없을 것으로 기대된다. 또한, 오징어 채낚기 어업뿐만 아니라, 갈치 채낚기 어업, 꽁치 봉수망 어업, 멸치 초망어업 등 타 집어등 관련 어업에도 기술 응용이 가능하여 집어 효율 향상을 통한 생산성 확대 효과가 기대된다. 수중 집어등, 선박용 조명등에도 유사한 기술을 활용할 수가 있으며, 향후 고출력 LED 응용분야로의 확장이 가능하다는 점에서 매우 전망이 밝다.
Conventional approaches for the fishing of common squid are based on the use of high brilliance light sources to stimulate responses. leading to the capture of common squid in a working area. Various fishing lamps are used as the light sources such as an incandescent lamp illuminator, a halogen lamp, and a metal halide lamp. Among these different types of lamps, metal halide lamps are most widely used for common squid fishing due to their high luminous flux per unit electric power consumption. However, the metal halide fishing lamp has a low utilization efficiency of light despite its high output luminous flux. Most light from the metal halide fishing lamp is emitted into the air, and only 8% of the total illumination reaches the surface of the sea. The emission also includes various wavelengths of light, such as ultraviolet rays, visible light, and infrared light, but the blue light that the common squid can recognize is only ablut 7% of the whole spectrum.
As an energy-efficient alternative, an LED fishing lamp is currently used by the fishing industry for on-the-spot fishing of common squid. The LED fishing lamp can save energy by over 80% compared to the metal halide lamp. This enhanced efficiency by the LED can result in the economic use of oil and higher profits, thus attracts remarkable attention by the fishing industry. However, there are two major problems in the existing approaches of LED-based fishing. First, the LED lamp is usually designed only for blue-light transmission mode for a deep penetration. However, this approach is not based on the complete understanding of biological characteristics of common squid, resulting in lower efficiencies than considered. Moreover, in contrast to the metal halide fishing lamp, current LED fishing lamps only cover a small working area where a sufficient number of common squid cannot be trapped.
To address the issues in the LED fishing mentioned above, this study is first focused on the investigation of behavioral and retinular responses of a common squid. This process will lead us to determine light distribution and wavelength of the LED which is optimal for fishing. Furthermore, in order to obtain a sufficient and proper fishing environment, we consider systematic design of the LED illumination structures. Through on-site biological studies and real fishing test, the effectiveness of the approach in this research is verified. From the two biological experiments, we discovered the characteristics of a common squid when it is stimulated by the LED lights. The red light stimulates the common squids near the surface of sea, while blue light does this for those in the deep sea. In addition, the blue light can be used to trap common squids in the fishing area. In order to gather a large amount of common squids, including those near the surface of the sea and far from the fishing ship, a red LED light source needs to be used. Then for the fishing of common squids, a blue LED light should be used in order to trap a large amount in the fishing area, effectively preventing escape from the fishing area.
To address the issues of systematic design of LED illumination, we designed an optimum light distribution of our LED fishing lamp based on light simulation and the biological characteristics of common squids, leading to covering all around a fishing vessel and attracting large amounts of common squid existing near the surface of the sea and in the deep sea. This coverage enabled a circular shape distribution of light that prevents the escape of common squids, enlarge the active working area, and gather large amount of common squids. This goal was achieved by flashing the combination of blue, red and white LED lights such that it takes a shape for providing 180° of light distribution. Based on the results of simulations, we fabricated the optimum LED fishing lamp. Its unique structure is a quadrant structure divided into two parts of light sources
red/white LEDs and blue/white LEDs. And it is installed on the rack for fishing lamp in a form of supporting degree of 20.
Using a prototype of our LED fishing lamp based on an optimal design, we performed a pilot test in the East Sea. For the pilot test, a fishing ship equipped with LED fishing lamps, the fishing rate of hand fishing obtained using an auto jigging machine was 50.8:49.2, while control fishing ships using MH fishing lamps achieved a rate of 86.4:13.6. These results show that hand fishing is more likely to be used on a MH fishing ship. On the other hand, the amount of fish caught using one auto jigging machine of am LED shipping ship was either similar to or higher than that caught on a MH fishing ship. Despite these results, it is still necessary to work on improving the lamps performance in order to enhance the fishing capacity of a LED fishing lamp. In addition, the results for fuel consumption showed that most of the fuel was consumed for sailing purposes. The average amount of fuel consumption per fishing hour was 4.9-14.6ℓ, with an average of 9.2ℓ. Given that the normal amount of fuel consumption for a metal halide fishing ship is about 500ℓ, it can clearly be seen that a significant amount of fuel can be saved with the installation of LED fishing lamps.
In conclusion, an analysis of the behavioral and retinular responses of a common squid over a range of light intensity levels and wavelengths of LED demonstrated the proper wavelength for an LED fishing lamp. We were also able to obtain the appropriate light distribution of such a lamp for adequate fishing environments. Our optimized LED fishing lamp can be employed concurrently for both long and short distances, so that we were able to design this lamp for use when gathering and fishing for common squid at each stage. Finally, after several attempts at designing an LED fishing lamp and then conducting pilot tests with a new prototype, we confirmed that our LED fishing lamp can save up to 50% in fuel expense without any reduction in fishing efficiency, as compared to the existing metal halide fishing lamp.
Language
English
URI
https://hdl.handle.net/10371/118326
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Mechanical Aerospace Engineering (기계항공공학부)Theses (Ph.D. / Sc.D._기계항공공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse