Publications

Detailed Information

CFD Code Development for Simulations of High-Voltage Gas Circuit Breakers using Overset Method with Radiation and Ablation Modelling : 복사와 용삭 모델링을 통한 초고압 가스 차단기 해석 및 겹침격자 기법의 코드 개발

DC Field Value Language
dc.contributor.advisor김규홍-
dc.contributor.author박정호-
dc.date.accessioned2017-07-13T06:15:09Z-
dc.date.available2017-07-13T06:15:09Z-
dc.date.issued2014-08-
dc.identifier.other000000020908-
dc.identifier.urihttps://hdl.handle.net/10371/118390-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 기계항공공학부, 2014. 8. 김규홍.-
dc.description.abstract본 연구에서는 정렬격자와 겹침격자 기법을 이용하여 가스 차단기 내의 열가스 유동을 전산해석하였다. 최고 4차 정확도의 겹침격자 기법과 3차 정확도의 공간차분법을 이용하여 유동을 해석하였다. 또한 전기장의 해석과 복사해석 그리고 노즐의 용삭을 고려하였다. 전기장 해석과 P-1 복사모델을 통한 해석에서는 타원형 방정식을 푸는 새로운 차분 방법이 제시되었다. 또한 복사전달방정식의 해법으로 온도와 밴드에 따른 제한치를 도입하여 밴드 평균을 하였다. 결과부분은 다음을 포함하고 있다.
첫째로 검증문제로는 압축과정을 모사하는 것과 소전류 차단 케이스가 선택되었다. 소전류 차단시에는 압축실에서의 압축과정이 압력상승의 주된 요인이다. 따라서 압축파의 해석이 압축실에서의 압축과정을 검증하는데 사용되었는데, 해석적 결과와 전산결과가 일치하는 것을 확인하였다. 그리고 소전류 차단시 유동 해석을 하였다. 총 두 가지 모델인 1,100kV와 145kV가 선택되었고 검증데이터는 압축실에서의 압력상승치를 사용하였다. 결과는 모든 경우에서 실험치와 일치되는 것을 확인하였다.
두번째로는 P-1 복사 모델과 4방향을 사용한 discrete ordinate method (DOM) 방법이 코드에 적용되었고, 복사방정식을 해석하는데 사용하였다. 복사 방정식의 해는 Tiemann 온도 분포를 이용한 해석해와 맞추어 비교하였다. 두 가지 방법은 각기 장단점이 있었으나, 두 경우 모두 해석해와 비교했을 때 어느 정도 신뢰할만한 결과를 얻었다. 또한 복사 해석을 통한 복사 열전달량을 이용하여 노즐재질의 용삭량을 계산하여 고려하였다.
세번째로는 몇 가지 초고압 차단기의 유동 해석을 수행하였다. 아크 플라즈마의 유동 검증을 위하여, 열팽창실에서의 압력상승 실험치가 사용되었다. 아킹 타임 에따라 총 두 가지의 해석 경우가 선택되었다. 그리고 두 경우 모두 실험결과와 일치되는 압력상승치를 얻었다.
마지막으로는 새로운 가스차단기의 모델을 디자인하기 위한 기초연구로 변수연구를 수행하였다. 주요 변수로는 노즐목의 길이, 노즐의 각도, 유로의 단면적이 선택되었다. 각각의 경우 절연 성능 향상을 위해 열팽창실에서의 압력 상승치 변화와 아크 중심부에서의 밀도 분포를 계산, 비교하였고, 전극주변에서의 유동을 해석하였다.
-
dc.description.abstractIn the present study, CFD code development based on structured grid using an overset grid method has been done to determine the internal flow of a self-blast circuit breaker. The overset method up to a 4th order interpolation and a 3rd order spatial discretization method were used for an accurate analysis. Additionally, calculations of an electric field, radiation and nozzle ablation were taken into account. For the electric field and P-1 radiation calculations, a new difference method was introduced to solve an elliptic-type based on FVM. Also for the accurate solution of radiative transfer equation, band averaging with limiting values according to temperature and bands are introduced in the present study. The result parts contain follows.
First for validation, a test of compression process and small capacitive current breaking case were selected and utilized. A test of compression process in the puffer cylinder is the main factor for pressure-rise in case of small capacitive current breaking. Compression wave analysis was done to validate the compression process in the puffer cylinder. The results were almost matched with the analytic solutions. Next, the flow in a small capacitive current breaking was calculated and analyzed. Total two models, 1,100kV and 145kV model, were selected. For validation, the measured data of pressure-rise in the puffer cylinder were used. The results of all cases are agreed well with the experimental data.
Second, the P-1 radiation model and the discrete ordinate method (DOM) with four directions were applied to the code and used to obtain a solution to the radiative transfer equation, and these were validated by comparing with the solution using the Tiemann profile. There was pros and cons of each model but all methods show reliable results compared to the analytical value. Also, ablation at the nozzle surface was considered and ablation mass flux of nozzle material was calculated using the radiative wall heat flux.
Third, several flow cases for large current breaking were analyzed using a structured grid. For validation and analysis of the arc plasma gas flow, pressure-rise in the heating chamber obtained from experiments was used. Total two cases according to arcing time were selected. The numerical results of the pressure-rise agreed well with the experimental data.
Last for preliminary study to design new gas circuit breakers, parametric study was done. As main parameters, the length of nozzle throat, the angle of nozzle and cross sectional areas of the flow path were selected. Pressure-rise in the heating chamber and density distribution in the arc center were calculated and the flow near the electrodes was analyzed for enhancing the breaking performance.
-
dc.description.tableofcontentsChapter 1. Introduction 1
1.1 Introduction to Circuit Breaker 1
1.2 Types of Circuit Breaker 2
1.3 Fundamentals of Gas Circuit Breaker 9
1.4 Outline of Thesis 12

Chapter 2. Arc-Plasma Modeling 15
2.1 Introduction 15
2.2 Properties of SF6 gas 17
2.2.1 Electrical conductivity 17
2.2.2 Specific heat 18
2.2.3 Gas property of PTFE mixture 18
2.3 Electric field modeling 21
2.3.1 Electric potential equation 21
2.3.2 Solutions for electric potential equation 22
2.3.3 Selective differencing method 26
2.4 Radiation modeling 29
2.4.1 Radiative transfer equation 29
2.4.2 Band averaging 29
2.4.3 Solutions of radiative transfer equation 34
2.5 Ablation modeling 51

Chapter 3. Numerical Modeling & Methods 55
3.1 Governing equations 55
3.2 Nondimensionalization of governing equations 57
3.3 Spatial Discretization 59
3.4 Time integration 63
3.5 Dual-time stepping 66
3.6 Local time stepping 68
3.7 Overset method 70
3.8 Boundary conditions 73

Chapter 4. Flow Analysis on Capacitive Current Breaking 76
4.1 Introduction 76
4.2 Validation from compression wave analysis 78
4.3 Specification of the model 81
4.3.1 Specification of the puffer type Gas Circuit Breaker (1100kV) 81
4.3.2 Specification of the puffer type Gas Circuit Breaker (145kV) 88
4.4 Flow of capacitive current breaking analysis 96

Chapter 5. Flow Analysis for Large Current Interruption 107
5.1 Introduction 107
5.2 Validation of the solver of elliptic equation 109
5.2.1 Duct flow with pressure gradient 109
5.2.2 Conducting sphere in an electric field 111
5.3 Validation of the solver of radiative transfer equation 113
5.4 Specification of the self-blast circuit breaker 117
5.5 Radiative source analysis 123
5.6 Electric field analysis 124
5.7 Flow analysis on Arc-flow interactions in a high voltage GCB 125

Chapter 6. Numerical Parametric Study of Gas Circuit Breaker 129
6.1 Preview 129
6.2 Length of the nozzle throat 131
6.3 Nozzle angle 140
6.4 Cross sectional areas of the flow path 147

Chapter 7. Conclusions 154
Appendix I 157
References 165
국문 초록 173
-
dc.formatapplication/pdf-
dc.format.extent8749862 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectGas circuit breaker-
dc.subjectOverset grid method-
dc.subjectStructured grid-
dc.subjectAblation-
dc.subjectRadiation-
dc.subject가스차단기-
dc.subject정렬격자-
dc.subject복사모델링-
dc.subject겹침격자기법-
dc.subject용삭모델링-
dc.subject.ddc621-
dc.titleCFD Code Development for Simulations of High-Voltage Gas Circuit Breakers using Overset Method with Radiation and Ablation Modelling-
dc.title.alternative복사와 용삭 모델링을 통한 초고압 가스 차단기 해석 및 겹침격자 기법의 코드 개발-
dc.typeThesis-
dc.contributor.AlternativeAuthorJungho Park-
dc.description.degreeDoctor-
dc.citation.pagesx, 174-
dc.contributor.affiliation공과대학 기계항공공학부-
dc.date.awarded2014-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share