Publications

Detailed Information

Hydrodynamic analysis of the optimal design of fish gills and human lung

DC Field Value Language
dc.contributor.advisor김호영-
dc.contributor.author박근환-
dc.date.accessioned2017-07-13T06:19:12Z-
dc.date.available2017-07-13T06:19:12Z-
dc.date.issued2015-02-
dc.identifier.other000000025891-
dc.identifier.urihttps://hdl.handle.net/10371/118448-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 기계항공공학부, 2015. 2. 김호영.-
dc.description.abstractIt is generally assumed that shapes encountered in nature have evolved in a way as to maximize the robustness of a species. Nevertheless, given natures notoriously complex designs, it is often unclear what is being optimized. We here consider the optimization design principle in two respiratory systems: fish gills, and human lung.

The lamellar pattern of fish gills is one of the few cases in which optimization in nature can be well defined. We demonstrate that the lamellar pattern of fish gills has been optimized, such that fish display interlamellar spaces of similar dimension regardless of body mass or species, thereby revealing the primary evolutionary pressure on fish gills. This natural optimization strategy demonstrates how control of the channel arrangement in microfluidic devices enhances heat and mass transfer.

Lungs are natural microfluidic networks that transport oxygen from air into blood stream. The diameter reduction ratio of airways of lung determines the efficiency of physiological processes. An optimal diameter reduction ratio is thus expected. We here develop a mathematical model for diffusion transport of acinar airway and unveil the origin of the observed diameter reduction ratio of acinar airways: Minimizing the energy cost of acinar airways for a given amount of oxygen transport, suggesting a modified Murrays law for acinar airways.
-
dc.description.tableofcontentsAbstract i
Contents iii
List of Figures v
1 Introduction 1
1.1 Optimal lamellar arrangement in fish gills . . . . . . . . . . 5
1.2 Physical principle of acinar airway design in human lungs . 6
2 Optimal lamellar arrangement in fish gills 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Experimental validation . . . . . . . . . . . . . . . . . . . . 13
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Materials and Methods . . . . . . . . . . . . . . . . . . . . . 18
2.5.1 Mass-transfer experiments an engineered gill . . . . 18
2.5.2 Scanning electron microscopy . . . . . . . . . . . . . 18
3 Physical principle of acinar airway design in human lungs 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Mathematical model . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Future work: Experimental validation . . . . . . . . . . . . 30
4 Conclusions 32
Appendix A 34
References 45
Abstract (in Korean) 53
-
dc.formatapplication/pdf-
dc.format.extent1728577 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectfish respiration-
dc.subjecthuman respiration-
dc.subjectoxygen transfer-
dc.subjectbiofluiddynamics-
dc.subject.ddc621-
dc.titleHydrodynamic analysis of the optimal design of fish gills and human lung-
dc.typeThesis-
dc.contributor.AlternativeAuthorKeunhwan Park-
dc.description.degreeDoctor-
dc.citation.pagesvii, 56-
dc.contributor.affiliation공과대학 기계항공공학부-
dc.date.awarded2015-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share