Publications

Detailed Information

Conical Refraction of Elastic Waves by Engineered Anisotropic Metamaterials : 비등방성 메타물질을 이용한 탄성파 원추 굴절

DC Field Value Language
dc.contributor.advisor김윤영-
dc.contributor.author안영관-
dc.date.accessioned2017-07-13T06:27:48Z-
dc.date.available2017-07-13T06:27:48Z-
dc.date.issued2017-02-
dc.identifier.other000000140742-
dc.identifier.urihttps://hdl.handle.net/10371/118573-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 기계항공공학부, 2017. 2. 김윤영.-
dc.description.abstractConical refraction is a phenomenon that occurs in biaxial anisotropic medium and can be used to adjust their unique wave propagation direction. The concept of conical refraction has been useful in the areas of electromagnetics and optics. However, in the ultrasonics field, vibrational wave propagation in elastic structures using conical refraction needs further research for understanding and finding applications.
Here, our study leads to the first proposal of an elastic metamaterial plate showing conical refraction and a fabricated elastic metamaterial capable of translocating a mechanical wave as if being teleported. An engineered metamaterial can provide an innovative approach to achieve translocation of an elastic stress wave. Our proposed metamaterial shows a high manufacturability because it is aluminum-based, which is the most widely utilized medium in recent industries, with a slit-inserted holey structure. This study rigorously evaluates the operational performance of the metamaterial through numerical simulation and experiments. The metamaterial is designed with non-resonant unit cells valid for broadband frequency bandwidth. Furthermore, this study also demonstrates a method for transforming multi-directional wave propagation in the metamaterial, generated by conical refraction, into selective unidirectional wave propagation. In addition, the topology optimization is used to design new configuration of metamaterial unit cells for various deflection angles. Through findings from optimization results, the performance of the engineered metamaterial can be improved in terms of directional tunability. The proposed system in this study is expected to be applied in non-destructive testing of mechanical waves, ultrasonic imaging, and a novel type of cloaking.
-
dc.description.abstract원추 굴절(Conical refraction)은 2축성 결정(biaxial crystal) 성질의 특별한 비등방성 물질에서만 나타날 수 있는 파동의 진행방향을 획기적으로 조절할 수 있는 현상이다. 전자기 및 광학 분야의 장비에서 유용하게 사용될 수 있는 개념이지만, 탄성 구조체를 따라 전파하는 진동파를 다루는 초음파 분야에서는 그 연구가 미진할 뿐만 아니라 그 활용방안 역시 찾지 못하고 있는 실정이다.
여기에서 우리는 원추 굴절 성질을 지니는 탄성 메타물질 평판을 최초로 제안하여, 기계적 파동(mechanical wave)이 마치 그 전파하는 과정에 있어서 공간이동 되는 것과 같이, 파동의 공간상의 전파위치를 옮겨주는 탄성 메타물질을 실체화하였다. 공학적으로 설계된 메타물질은 탄성파동을 공간이동 시키는데 있어 매우 혁신적이다. 제안된 메타물질은 근래 산업에서 가장 중요하게 활용되는 물질인 알루미늄을 기저(base)로 하여 슬릿(slit)들이 삽입된 다공성 구조 형태로 구성되어 매우 제작가능성이 높다. 본 연구에서 우리는 수치적 시뮬레이션과 실험을 통해 메타물질의 작동성능을 완벽하게 검증하였을 뿐만 아니라, 메타물질의 단위구조(unit cell)를 비공진 구조(non-resonant structure)로 구성하여 광대역의 작동주파수 대역을 가지도록 설계하였다. 더불어 파동이 메타물질을 따라 전파할 때 원추 굴절에 의해 두 가지의 진행 경로를 가질 수 있는데, 이들 중 오직 한 방향으로만 선택적으로 파동을 전달하는 방법 역시 설명하고 검증하였다. 또한 위상최적설계 기법(topology optimization)을 사용하여 다양한 편향 각도(deflection angle)를 갖는 메타물질의 단위구조를 새롭게 설계하였다. 최적설계 된 구조를 이용하면, 메타물질의 작동성능이 방향 조정성(directional tunability) 측면에서 향상될 수 있다. 우리는 본 연구에서 제안한 메타물질 시스템을 비파괴 검사(non-destructive testing), 초음파 이미징(ultrasound imaging) 분야와 더불어, 새로운 방식의 클로킹(cloaking)으로 응용할 수 있을 것으로 기대하고 있다.
-
dc.description.tableofcontentsCHAPTER 1 INTRODUCTION 1
1.1 Phononic crystals and metamaterials 1
1.2 Motivation and research objectives 3
1.3 Outline of thesis 7
CHAPTER 2 FUNDAMENTAL PRINCIPLES OF WAVE PROPAGATION IN PERIODIC ELASTIC MEDIUM 9
2.1 Wave behaviors in periodic elastic structures 9
2.1.1 Dispersion curves 9
2.1.2 Equi-frequency contours 15
2.2 Brillouin zones in two-dimensional periodic structures 19
2.3 Wave propagation characteristics by changing the stiffness tensor 23
CHAPTER 3 ELASTIC WAVE TRANSLOCATION METAMATERIALS BY CONICAL REFRACTION 37
3.1 Overview 37
3.2 Design and realization of anisotropic metamaterials 39
3.2.1 Condition for conical double point in elastic medium 39
3.2.2 Engineered metamaterials 41
3.3 Numerical simulations for conical refraction of elastic waves 43
3.3.1 Wave propagation simulations 43
3.3.2 Adjusting the deflection angle by altering the anisotropy factor 45
3.4 Experimental demonstration of metamaterials 49
3.4.1 Experimental procedure 49
3.4.2 Short-time Fourier transform results 53
3.4.3 Wide operating frequency range of metamaterials 55
3.5 Selection of the travel path in engineered metamaterials 57
3.6 Summary 62
CHAPTER 4 IN-DEPTH ANALYSIS ON ENGINEERED METAMATERIALS 80
4.1 Overview 80
4.2 The effect of metamaterial geometry perturbation 82
4.3 S-parameter retrieval method for the effective property 85
4.4 Phase information of transmitted elastic waves 87
4.5 Time transient analysis 89
4.5.1 Snapshot of wave propagation in the engineered metamaterial 89
4.5.2 Power transmission calculation 91
4.6 Detouring around the high-risk area 94
4.7 Summary 98
CHAPTER 5 TOPOLOGY OPTIMIZATION OF METAMATERIAL UNIT CELLS FOR ADJUSTING THE DEFLECTION ANGLE 119
5.1 Overview 119
5.2 Topology optimization of periodic structures in frequency domain 121
5.3 Topology optimization of periodic structures in wavenumber domain 124
5.3.1 Design proposal to control the deflection angle 124
5.3.2 Formulations for topology optimization 126
5.3.3 Optimal configurations of metamaterial unit cells 130
5.4 Summary 133
CHAPTER 6 CONCLUSIONS 143
APPENDIX A SUPERCELL ANALYSIS IN TOPOLOGY OPTIMIZATION OF PERIODIC STRUCTURES 146
A.1 Overview 146
A.2 Dispersion analysis in the 45-rotated augmented supercell 148
A.3 Application in topology optimization of phononic crystals 155
A.4 Summary 159
REFERENCES 169
ABSTRACT (KOREAN) 179
-
dc.formatapplication/pdf-
dc.format.extent22735087 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectMetamaterials-
dc.subjectConical refraction-
dc.subjectAnisotropy-
dc.subjectElastic waves-
dc.subjectTopology optimization-
dc.subject.ddc621-
dc.titleConical Refraction of Elastic Waves by Engineered Anisotropic Metamaterials-
dc.title.alternative비등방성 메타물질을 이용한 탄성파 원추 굴절-
dc.typeThesis-
dc.description.degreeDoctor-
dc.citation.pages180-
dc.contributor.affiliation공과대학 기계항공공학부-
dc.date.awarded2017-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share