Publications

Detailed Information

Full Complex Wave Generation Methods Using Multiple Intensity Images : 다중 영상으로부터 완전 광파를 재생하는 방법

DC Field Value Language
dc.contributor.advisorLee, Byoungho-
dc.contributor.authorChen, Ni-
dc.date.accessioned2017-07-13T07:04:58Z-
dc.date.available2017-07-13T07:04:58Z-
dc.date.issued2014-08-
dc.identifier.other000000021091-
dc.identifier.urihttps://hdl.handle.net/10371/119015-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 8. Lee, Byoungho.-
dc.description.abstract실제 광학영상에서 획득하기 쉬운 세기성분뿐만 아니라 위상성분도 필요하다. 위상성분에는 물체의 모양, 깊이 등 중요한 정보들을 갖고 있다. 하지만 이는 일반 카메라로 획득하기에는 어려움들이 있음으로 특별한 기술들로 광파의 위상과 진폭을 기록하여야 한다. 그 방법들 중에서 회절 빔 세기를 반복적 측정방법 (iterative methods)과 홀로그래피 기술이 있다.
본 논문에서는 여러 개의 영상의 세기 값들만 이용하여 수렴하는 파면을 복원하는 방법을 제안하였다. 먼저 카메라로 획득한 세기영상을 서로 다른 해상도 레벨에 따라 재 샘플링하여 고해상도와 저 해상도 성분 영상으로 ss나눈다. 이 과정에 반복적 측정방법을 적용함으로 빠르게 수렴하는 위상 성분을 재생할 수 있다. 시뮬레이션과 실험으로부터, 제안된 방법은 기존의 방법들보다 위상복원 하는데 계산 속도가 50%이상 빠르다는 것을 확인 하였다.
일반 광원 아래에서 획득한 물체의 여러 시점영상들로부터 홀로그램을 생성하는 기법에 대하여, 홀로그램 재생영상의 해상도에 영향을 미치는 파라미터들을 분석하였다. 이 분석을 기반으로, 렌즈배열을 이용하여 홀로그램 재생 영상의 해상도를 향상시키는 방법을 제안 하였다. 홀로그램 생성에서 4각형 렌즈배열과 6각형 렌즈 배열을 사용하는 방법을 비교하였고, 그 결과 6각형 렌즈 배열을 사용하는 것이 샘플링을 더 효율적으로 할 수 있다는 것을 확인 하였다.
기존에 렌즈배열을 이용하여 수많은 시점영상들로부터 홀로그램을 생성 하는 방법에는 여러 가지 제약 조건들이 있음으로, 오직 서로 다른 깊이면 에서 촬영된 두 장의 영상만을 이용하여 홀로그램 생성 방법을 제안하였다. 제안된 방법은 기존 방법들에 존재했었던 샘플링 제약 요소들을 극복하였고 작은 물체로부터 큰 물체까지의 고해상도 홀로그램 영상을 재생 가능하다.
-
dc.description.abstractIn the research of optical imaging, both amplitude and phase of light wave are necessary. Since the phase carries important information about a wavefront, we can use it to measure the shape, surface profile and other properties of an object. However, it is difficult to measure the phase by general camera sensors due to its high frequency. Therefore, we need to use special techniques to rebuild both the amplitude and phase of a light wave. Among these wavefront reconstruction techniques, the widely used one is using intensity measurements but without interferometric approaches.
In this thesis, we develop a fast convergent wavefront retrieval from multiple intensity measurements. Resampling captured diffractive intensity images with different levels makes images that represent different resolutions of an object. Then we can perform separate iterative calculations to the resampled images, therefore reach fast convergence in the reconstruction. Both simulation and experimental results show the convergences of the proposed method is about two times faster than the conventional method in our test images.
In the techniques of hologram generation from multiple view projection (MVP) images, the scientists capture the MVP images under incoherent illumination. My previous works analyzed the parameters that affect the resolution of the reconstructed images, and proposed a lens array shift method to improve the resolution of the reconstructions. Since the lens array shift method introduced movement in the capturing process, in this thesis, I compare the resolution of hologram reconstruction between using rectangular and hexagonal lens arrays to capture the multiple view images. I will show the theory and verify it with simulation and experimental results.
In the conventional hologram generation from multiple view images, most of the limitations are induced by the lens array used in the multiple view image capturing, which induces the performance limitation. We develop hologram generation from three photographic images captured with only a general camera and without any other optical components. The three images are used to produce orthographic images without sampling limitation introduced by other ingredients. Therefore, we can synthesize high resolution holograms from these orthographic images. The size of the object can be from microscopic to large size objects.
-
dc.description.tableofcontentsList of Figures .................................................................................... viii
List of Tables ...................................................................................... xiv
Chapter 1. Introduction .................................................................... 1
1.1. Role of phase in optical imaging ................................................... 1
1.2. Interferometric wavefront reconstruction techniques .................... 4
1.2.1. Holography ................................................................................... 5
1.2.2. Phase-shifting interferometry ....................................................... 6
1.3. Non-interferometric wavefront reconstruction techniques ............ 7
1.3.1. Shack-Hartmann sensors .............................................................. 8
1.3.2. Iterative techniques ....................................................................... 9
1.3.3. Direct methods ............................................................................ 10
1.4. Hologram generation with incoherent illumination..................... 12
1.4.1. Scanning holography .................................................................. 13
1.4.2. Fresnel incoherent correlation holography ................................. 13
1.4.3. Hologram generation from multiple view images ...................... 14
1.5. Outline of this thesis .................................................................... 15
Chapter 2. Fast wavefront reconstruction algorithm from
multiple diffracted intensity images .................................................. 17
2.1. Wavefront reconstruction from diffracted images....................... 17
2.2. Principle ....................................................................................... 25
2.3. Simulations .................................................................................. 34
2.4. Experimental results .................................................................... 36
2.5. Chapter summary ......................................................................... 42
Chapter 3. Resolution improvement on hologram generation
using lens array ................................................................................... 43
3.1. Introduction of hologram generation from orthographic Images 43
3.1.1. Fourier hologram generation from orthographic view images ... 45
3.1.2. Orthographic projection images obtained by a lens array .......... 46
3.1.3. Fourier hologram generation using orthographic projection
images ................................................................................................... 48
3.1.4. Limitations in the reconstructions .............................................. 49
3.2. Resolution enhancement of the hologram reconstruction by using
hexagonal lens array ............................................................................. 50
3.2.1. Theory ......................................................................................... 53
3.2.2. Preprocess for the hexagonal element images ............................ 58
3.2.3. Orthographic projection images generation using hexagonal
elemental images ................................................................................... 60
3.2.4. Simulations ................................................................................. 61
3.2.5. Experiment results ...................................................................... 66
3.3. Chapter Summary ........................................................................ 69
Chapter 4. Fourier hologram generation from three photos
captured at different focal planes ..................................................... 71
4.1. Introduction ................................................................................. 71
4.2. Theory .......................................................................................... 76
4.3. Simulation results ........................................................................ 82
4.4. Experiment results ....................................................................... 86
4.5. Chapter summary ......................................................................... 92
Chapter 5. Conclusion ..................................................................... 93
Appendix A ........................................................................................ 96
A.1. Relations between optical fields at different planes ...................... 96
A.2. Overlapping in the space domain of the reconstructions .............. 99
A.3. Spatial frequency of the reconstructions ..................................... 100
Appendix B ...................................................................................... 104
Bibliography ...................................................................................... 105
초 록 ...................................................................................... 118
Acknowledgement ............................................................................. 121
-
dc.formatapplication/pdf-
dc.format.extent4662428 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectWavefront sensor-
dc.subjectHolography-
dc.subjectImage processing-
dc.subject홀로그래피-
dc.subject파면 복원-
dc.subject.ddc621-
dc.titleFull Complex Wave Generation Methods Using Multiple Intensity Images-
dc.title.alternative다중 영상으로부터 완전 광파를 재생하는 방법-
dc.typeThesis-
dc.contributor.AlternativeAuthor진니-
dc.description.degreeDoctor-
dc.citation.pages123-
dc.contributor.affiliation공과대학 전기·컴퓨터공학부-
dc.date.awarded2014-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share