Publications

Detailed Information

Tunnel Field-Effect Transistor with Si/SiGe Materials for High Current Drivability : 높은 전류구동능력을 위한 Si/SiGe 물질을 가지는 터널링 전계효과 트랜지스터

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

김현우

Advisor
박병국
Major
공과대학 전기·컴퓨터공학부
Issue Date
2015-02
Publisher
서울대학교 대학원
Keywords
band-to-band tunnelingtunnel field-effect transistorlow operating power devicetunneling resistancesubthreshold swingambipolar current
Description
학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2015. 2. 박병국.
Abstract
For integrated circuits with highly-scaled complementary MOS (CMOS) technology, power dissipation problem has become an important issue since power per chip continues to increases and leakage power dominates in advanced technology nodes. In order to solve power issues, the supply voltage (VDD) scaling is very essential and devices which have low leakage current are needed. Recently, many research groups have studied a tunnel field-effect transistors (tunnel FETs) which is suitable for low operating power device. Tunnel FETs have very low leakage current and small subthrehold swing (SS) at room temperature unlike CMOS because of carrier injection using tunneling.
In this thesis, a novel tunnel FET with SiGe body and elevated Si drain region have been proposed. The proposed tunnel FET has larger current drivability than conventional Si tunnel FETs because it uses a narrow bandgap material for low tunneling resistance. Also, it is expected that electrical characteristics can be improved by using SiGe channel and source for n-channel as well as p-channel operation. In addition, ambipolar current that is caused by band-to-band tunneling (BTBT) between channel and drain can be suppressed by using elevated Si drain region.
For obtaining fundamental electrical properties of tunnel FET with SiGe body, planar structures are firstly fabricated and analyzed with Si tunnel FET. From electrical characteristics of fabricated devices, it is observed that both n-type and p-type SiGe tunnel FETs have better switching properties than Si devices. Current saturations become faster and drive current shows 10 times more than that of Si tunnel FETs. In addition, BTBT model parameters of Si and Ge materials in fabricated devices are extracted through TCAD simulation. Extracted A and B parameters of BTBT model in Si are 4×1014 cm-1s-1 and 9.9×106 V/cm. Also, A and B parameters of Ge can be extracted as 3.1×1016 cm-1s-1 and 7.1×105 V/cm, respectively.
Using calibrated model parameters, proposed tunnel FET is simulated and optimized in terms of switching properties with changing Ge contents, effect of the elevated Si drain region, short-channel effects, inverter operation, and device delay. Based on these optimized simulation results, the proposed tunnel FET is fabricated using spacer technique because it is possible to make self-aligned doping process. Key unit process is as follows: epitaxial growth for Si and SiGe materials, e-beam lithography for active-fin formation, and sidewall spacer gate formation.
For n-channel and p-channel operation, fabricated tunnel FET shows the better electrical characteristics than control groups. Extracted point SS is 51.1 mV/dec for p-type tunnel FET and 87 mV/dec for n-type tunnel FET. Ambipolar current of the proposed tunnel FET is suppressed to 1/100 of that of planar SiGe tunnel FET. Also, in order to analyze current flow mechanism of tunnel FET, the electrical characteristics are measured with temperature variation. As temperature goes up, Shockley-Read-Hall and field-dependent generation are increased resulting in degradation of switching property. In current saturation region, BTBT which has low temperature sensitivity is dominant on current property.
From this study, it is demonstrated that the novel tunnel FET with SiGe body and the elevated Si drain shows improved electrical performance compared with Si tunnel FET. Also, both n-type and p-type devices can obtain high current drivability and small SS without structure changes. This means that the proposed device has strong advantage in terms of implementing IC with tunnel FET. Thus, it will be one of the promising candidates for next-generation devices.
Language
English
URI
https://hdl.handle.net/10371/119079
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share