Low-complexity block turbo code decoding for soft-decision error correction
연판정 오류정정을 위한 낮은 복잡도의 블록 터보부호 복호화 연구

Cited 0 time in Web of Science Cited 0 time in Scopus
Junhee Cho
공과대학 전기·컴퓨터공학부
Issue Date
서울대학교 대학원
Turbo codessoft-decision error correctionChase-Pyndiah algorithmblock turbo decodingiterative decoding
학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 성원용.
As the throughput needed for communication systems and storage devices increases, high-performance forward error correction (FEC), especially soft-decision (SD) based technique, becomes essential. In particular, block turbo codes (BTCs) and low-density parity check (LDPC) codes are considered as candidate FEC codes for the next generation systems, such as beyond-100Gbps optical networks and under-20nm NAND flash memory devices, which require capacity-approaching performance and very low error floor. The BTCs have definite strengths in diversity and encoding complexity because they generally employ a two-dimensional structure, which enables sub-frame level decoding for the row or column code-words. This sub-frame level decoding gives a strong advantage for parallel processing. The BTC decoding throughput can be improved by applying a low-complexity algorithm to the small level decoding or by running multiple sub-frame decoding modules simultaneously. In this dissertation, we develop high-throughput BTC decoding software that pursuits these advantages.

The first part of this dissertation is devoted to finding efficient test patterns in the Chase-Pyndiah algorithm. Although the complexity of this algorithm linearly increases according to the number of the test patterns, it naively considers all possible patterns containing least reliable positions. As a result, consideration of one more position nearly doubles the complexity. To solve this issue, we first introduce a new position selection criterion that excludes some of the selected ones having a relatively large reliability. This technique excludes the selection of sufficiently reliable positions, which greatly reduces the complexity. Secondly, we propose a pattern selection scheme considering the error coverage. We define the error coverage factor that represents the influence on the error-correcting performance and compute it by analyzing error events. Based on the computed factor, we select the patterns with the greedy algorithm. By using these methods, we can flexibly balance the complexity and the performance.

The second part of this dissertation is developing low-complexity soft-output processing methods needed for BTC decoding. In the Chase-Pyndiah algorithm, the soft-output is updated in two different ways according to whether competing code-words exist on the updating positions or not. If the competing code-words exist, the Euclidean distance between the soft-input signal and the code-words that are generated from the test patterns is used. However, the cost of distance computation is very high and linearly increases with the sub-frame length. We identify computationally redundant positions and optimize the computing process by ignoring them. If the competing ones do not exist, the reliability factor that should be pre-determined by an extensive search is demanded. To avoid this, we propose adaptive determination methods, which provides even better error-correcting performance. In addition, we investigate the Pyndiah's soft-output computation and find its drawbacks that appear during the approximation process. To remove the drawbacks, we replace the updating method of the positions that are expected to be seriously damaged by the approximation with the reliability factor-based one, which is much simpler, even though they have the competing words.

This dissertation also develops a graphics processing unit (GPU) based BTC decoding program. In order to hide the latency of arithmetic and memory access operations, this software applies the kernel structure that processes multiple BTC-words and allocates multiple sub-frames to each thread-block. Global memory access optimization and data compression, which demands less shared memory space, are also employed. For efficient mapping of the Chase-Pyndiah algorithm onto GPUs, we propose parallel processing schemes employing efficient reduction algorithms and provide step-by-step parallel algorithms for the algebraic decoding.

The last part of this dissertation is devoted to summarizing the developed decoding method and comparing it with the decoding of the LDPC convolutional code (CC), which is currently reported as the most powerful candidate for the 100Gbps optical network. We first investigate the complexity reduction and the error rate performance improvement of the developed method. Then, we analyze the complexity of the LDPC-CC decoding and compare it with the developed BTC decoding for the 20% overhead codes.

This dissertation is intended to develop high-throughput SD decoding software by introducing complexity reduction techniques for the Chase-Pyndiah algorithm and efficient parallel processing methods, and to emphasize the competitiveness of the BTC. The proposed decoding methods and parallel processing algorithms verified in the GPU-based systems are also applicable to hardware-based ones. By implementing hardware-based decoders that employ the developed methods in this dissertation, significant improvements on the throughputs and the energy efficiency can be obtained. Moreover, thanks to the wide rate coverage of the BTC, the developed techniques can be applied to many high-throughput error correction applications, such as the next-generation optical network and storage device systems.
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Electrical and Computer Engineering (전기·정보공학부)Theses (Ph.D. / Sc.D._전기·정보공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.