Browse

Game Theoretical Approaches for Wireless Networks

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
이웅희
Advisor
김성철
Major
공과대학 전기·컴퓨터공학부
Issue Date
2017-02
Publisher
서울대학교 대학원
Keywords
Game TheoryWireless Networks
Description
학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 김성철.
Abstract
In this dissertation, I introduce three algorithms, which are connectivity reconstruction game (CRG), adaptive sector coloring game (ASCG), and asymmetric transmission game (ATG), by mainly using supermodular game and exact potential game with considerations of various objectives (e.g., energy consumption and interference management) in wireless sensor and cellular networks. My main contributions are threefold: 1) connectivity relaxation (energy saving) in wireless localization
2) intercell interference coordination in wireless cellular networks
3) interference minimization in wireless ad-hoc relay networks. The corresponding explanations are as follows. 1) In geographically dense and energy limited wireless sensor networks, connectivity based localization with full power transmission can be inefficient in terms of energy consumption. In this work, I propose a distributed power control based connectivity reconstruction game, which takes into considerations of both energy efficiency and the quality of localization. The proposed scheme results in a better performance with an improved 61.9% reduction in energy consumption while maintaining the performance of localization at a level similar to the conventional algorithm with full power transmission. 2) Inter-cell interference coordination (ICIC) is a promising technique to improve the performance of frequency-domain packet scheduling (FDPS) in downlink LTE/LTEA networks. However, it is difficult to maximize the performance of FDPS using static ICIC schemes because of insufficient consideration of signal-to-interference-and-noise ratio (SINR) distribution and user fairness. On the other hand, dynamic ICIC schemes based on channel state information (CSI) also have difficulty presented in the excessive signaling overhead and X2 interface latency. In order to overcome these drawbacks, I introduce a new concept of ICIC problem based on geometric network information (GNI) and propose an ASCG as a decentralized solution of the GNI based ICIC problem. Furthermore, I develop an ASCG with a dominant strategy space noted as ASCGD to secure a stable solution through proving the existence of Nash equilibrium (NE). The proposed scheme provides better performance in terms of system throughput gain of up to about 44.1%, and especially of up to about 221% for the worst 10% users than static ICIC schemes. Moreover, the performance of the CSI based ICIC, which
require too much computational load and signaling overhead, is only 13.0% and 5.6% higher than that of ASCG-D regarding the total user throughput and the worst 10% user throughput, respectively. The most interesting outcome is that the signaling overhead of ASCG-D is 1/144 of dynamic ICIC schemes one. 3) In this work, I introduce the new concept of temporal diversity utilization based
on asymmetric transmission to minimize network interference in wireless ad-hoc networks with a two-hop half-duplex relaying (HDR) protocol. Asymmetric transmission is an interference-aware backoff technique, in which each communication session (source-relay-destination link) adaptively chooses a certain subset of spectrallyorthogonal data streaming which should be delayed by the duration of one time-slot (i.e., half of one subframe). I design the problem in the HDR scenario by applying the concept of asymmetric transmission, and evaluate the game-theoretical algorithm, called ATG, to derive the suboptimal solution. I show that ATG is an exact potential game, and derive its convergence and optimality properties. Furthermore, I develop an approximated version of ATG (termed A-ATG) in order to reduce signaling and computational complexity. Numerical results verify that two algorithms proposed showsignificant synergistic effects when collaborating with the conventional methods in
terms of interference coordination. Ultimately, the energy consumption to satisfy the rate requirement is reduced by up to 17:4% compared to the conventional schemes
alone.
Language
English
URI
https://hdl.handle.net/10371/119273
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Electrical and Computer Engineering (전기·정보공학부)Theses (Ph.D. / Sc.D._전기·정보공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse