Publications

Detailed Information

Fabrication of Oxidant-generating and Capacitive Anode with Electrochromic Effect of TiO2 Nanotube Array : TiO2 나노튜브의 전기착색 효과를 활용한 산화제 생성용 전극의 제조

DC Field Value Language
dc.contributor.advisor윤제용-
dc.contributor.author김춘수-
dc.date.accessioned2017-07-13T08:39:04Z-
dc.date.available2018-01-23-
dc.date.issued2015-02-
dc.identifier.other000000024899-
dc.identifier.urihttps://hdl.handle.net/10371/119726-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 화학생물공학부, 2015. 2. 윤제용.-
dc.description.abstractGreat interest in anode materials has dramatically emerged with increasing demand for electrochemically generated oxidants in industrial electrochemistry. For the last five decades, these needs have been mostly achieved by the introduction of two well-known anode materials, the dimensional stable anode (DSA®) and boron-doped diamond (BDD) electrodes. Nevertheless, the high cost and complicated process in fabricating these electrodes remains as a big obstacle for further development. Thus, the development of a simple and cost-effective method to fabricate an efficient anode material could be a great challenge, and could provide new opportunities and innovations in industrial electrochemistry. This study aimed to development of innovative oxidant-generating anode using the electrochromic effect of TiO2 nanotube array (NTA) and understanding of the electrochemical and surface characteristics of the electrochromic TiO2 NTAs as oxidant-generating anode.
First, we report a novel anode material for the production of oxidants, the dark blue colored TiO2 nanotube array (NTA) (denoted as Blue TiO2 NTA) which has never been successfully achieved with titania-based materials. This titania-based electrocatalyst with irreversible electrochromism and high conductivity was successfully fabricated with simple cathodic polarization of anatase TiO2 NTA and exhibits the excellent electrocatalytic activity in generating chlorine (Cl2) and hydroxyl radical (?OH) which is comparable to the commercial DSA® and BDD electrodes, respectively.
Second, novel fabricating strategy using simple cathodic polarization was proposed to fabricate new electrochromic TiO2 NTA distinct from Blue TiO2 NTA as oxidants generating electrocatalyst. The simple cathodic polarization of amorphous TiO2 NTA triggered the black coloration with electrochromic effect (denoted as amorphous Black TiO2 NTA). This amorphous Black TiO2 NTA turned to highly electrocatalytic anatase Black TiO2 NTA in hydroxyl radical production with annealing under oxygen deficient condition.
Finally, capacitive and electrocatalytic properties of these electrochromic TiO2 NTAs was investigated. In the oxygen evolution reaction (OER), the hydroxyl radical mediated OER was determined by Tafel analysis of OER on Blue and Black TiO2 NTA. Blue TiO2 NTA revealed the higher electrocatalytic activity in chlorine evolution with the large OER overpotential than Black TiO2 NTA, whereas the Black TiO2 NTA exhibited better performance in the capacitive properties estimated by areal capacitance than Blue TiO2 NTA. These unique electrochemical properties of Blue and Black TiO2 NTA can be explained by the different level of charge carrier density between Blue and Black TiO2 NTA as result of electrochemical self-doping.
Thus, this Blue and Black TiO2 NTA is suggested as a potential cost effective anodic material in industrial electrochemistry. In addition, even in other metal oxides other than titania, the cathodic polarization (accompanied with irreversible electrochromism) method not only may be applied to explore a new route for low-cost and novel anodic materials, but also can offer new opportunities for applications of photocatalyst, dye-sensitized solar cell and supercapacitor.
-
dc.description.tableofcontentsAbstract-----------------------------------------------------------------------i
Contents --------------------------------------------------------------------iv
List of Figures-------------------------------------------------------------ix
List of Tables------------------------------------------------------------xvii

Chapter 1. Introduction------------------------------------------------1
1.1. Research Background--------------------------------------------------1
1.2. Objectives of the study-------------------------------------------------6

Chapter 2. Literature Review----------------------------------------8
2.1. TiO2 nanotube array (NTA) -----------------------------------------8
2.1.1. Electrochemical anodized TiO2 NTA -------------------------------------8
2.1.2. Development of anodized TiO2 NTA------------------------------------------11
2.1.3. Formation mechanism of anodized TiO2 NTA-------------------------------13
2.1.4. Geometry and composition of TiO2 NTA by anodization condition-----22

2.2. Electrochromism------------------------------------------------------30
2.2.1. Electrochromism of TiO2 NTA -----------------------------------------30
2.2.2. Fundamental understanding of electrochromism in metal oxide-------31

Chapter 3. Materials and Methods-------------------------------35
3.1. Chemicals and fabrication of TiO2 NTA -------------------------35
3.2. Analytical methods----------------------------------------------------37
3.2.1. Surface characterization-------------------------------------------------37
3.2.2. Measurement of the electrochemical properties of the electrodes---------38
3.2.2. Estimation of the electro-generated oxidants on the electrodes------------41

Chapter 4. Results and Discussion--------------------------------43
4.1. Fabrication of blue colored anatase TiO2 nanotube array using by simple cathodic polarization----------------------------------44
4.1.1. Fabricating dark blue colored TiO2 NTA with simple cathodic polarization-------------------------------------------------------------------------------44
4.1.2. High conductivity and electrocatalytic activity in oxygen evolution of Blue TiO2 NTA---------------------------------------------------------------------------47
4.1.3. Typical electrochromic effect on amorphous TiO2 NTA--------------------50
4.1.4. Superior conductivity and high level of dopants of Blue TiO2 NTA------53
4.1.5. Change of optical band gap on Blue TiO2 NTA ----------------------------56
4.1.6. SEM images on Blue and anatase TiO2 NTA---------------------------------58
4.1.7. XRD patterns and XPS spectra on Blue TiO2 NTA and anatase TiO2 NTA---------------------------------------------------------------------------------------------- 60
4.1.8. Chlorine and hydroxyl radical production on Blue TiO2 NTA------63
4.1.9. Comparison of oxidants generating efficiency between Blue TiO2 NTA and IrO2/Ti, and boron doped diamond (BDD) electrode----------66
4.1.10. Anodic polarized current-potential curves of oxygen evolution reaction (OER) on Blue TiO2 NTA-----------------------------------------------------69
4.1.11. Tafel plot obtained from the ohmic drop corrected anodic polarized current-potential curves-------------------------------------------------72
4.2. Fabrication of black colored anatase TiO2 nanotube array using by simple cathodic polarization-------------------------------- 74
4.2.1. Limited the level of dopants by the cathodic polarization on anatase TiO2 NTA--------------------------------------------------------------------------------------- 76
4.2.2. Fabrication of Black TiO2 NTA using by the cathodic polarization and Surface characterization---------------------------------------------------78
4.2.3. Electrochemical properties of the anatase Black TiO2 NTA compared with the amorphous TiO2 NTA----------------------------------------------------------83
4.2.4. Electrochemical properties of the anatase Black TiO2 NTA compared with the anatase TiO2 NTA--------------------------------------------------------------86
4.2.5. Chemical composition and oxidation state of the anatase Black TiO2 NTA--------------------------------------------------------------------------------------88
4.2.6. Possibility of the Black TiO2 NTA as a potential anode material----------91
4.2.7. Electro-generated chlorine evolution on Black TiO2 NTA------------93
4.2.8. Electrochromic TiO2 NTA samples prepared with various fabrication processes under different annealing and cathodic polarization conditions-------95
4.3. Electrochemical Characterization of Blue and Black TiO2 Nanotube Array Electrode treated by the Cathodic Polarization----------------------------------------------------------------99
4.3.1. Electrochromic TiO2 NTA samples prepared with various fabrication processes under different annealing and cathodic polarization conditions-----102
4.3.2. Cyclic voltammograms (CVs) with four faradic reactions of Blue and Black TiO2 NTAs-----------------------------------------------------------------104
4.3.3. Cyclic voltammograms (CVs) with four faradic reactions of Blue and Black TiO2 NTAs------------------------------------------------------------106
4.3.4. Anodic polarized current-potential curves and Tafel plot to examine OER of Blue and Black TiO2 NTA---------------------------------109
4.3.5. Evolution of chlorine (Cl2) on Blue and Black TiO2 NTA-------------113
4.3.6. Capacitive properties of Blue and Black TiO2 NTA-------------115

Chapter 5. Conclusions----------------------------------------------122
References----------------------------------------------------------------125
국문 초록-----------------------------------------------------------------139
-
dc.formatapplication/pdf-
dc.format.extent61713494 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectTiO2 nanotube array electrode-
dc.subjectcathodic polarization-
dc.subjectelectrochromism-
dc.subjectanode material-
dc.subjectelectrochemically generated oxidants-
dc.subject.ddc660-
dc.titleFabrication of Oxidant-generating and Capacitive Anode with Electrochromic Effect of TiO2 Nanotube Array-
dc.title.alternativeTiO2 나노튜브의 전기착색 효과를 활용한 산화제 생성용 전극의 제조-
dc.typeThesis-
dc.description.degreeDoctor-
dc.citation.pages140-
dc.contributor.affiliation공과대학 화학생물공학부-
dc.date.awarded2015-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share