Publications

Detailed Information

A Study on the Rheological Parameters of Silk Fibroin Solutions for Electrohydrodynamic Fabrication : 전기수력학적 제조에서 실크 피브로인 용액의 유변학적 변수에 관한 고찰

DC Field Value Language
dc.contributor.advisor이기훈-
dc.contributor.author김무곤-
dc.date.accessioned2017-07-13T17:45:29Z-
dc.date.available2017-07-13T17:45:29Z-
dc.date.issued2015-02-
dc.identifier.other000000024933-
dc.identifier.urihttps://hdl.handle.net/10371/121110-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 바이오시스템·소재학부, 2015. 2. 이기훈.-
dc.description.abstractSilk fibroin (SF) was fabricated using the electrohydrodynamic (EHD) process in order to prepare nanoscale fibers. Despite the high potential of SF nanofibers in biomedical applications, the EHD fabrication of SF has yet to be thoroughly studied. Most SF studies have focused on stable fiber formation, even though particles can be formed using the same process. Thus, the aim of this study is to provide a comprehensive understanding of EHD in the fabrication of SF from particles to fibers in the context of certain rheological properties of SF solution. In addition, a rheological parameter is proposed in order to predict the mode of EHD fabrications as well as product size, regardless of the concentration and molecular weight of SF. Samples of SF with different molecular weight were prepared by controlling the dissolution time of SF in CaCl2/EtOH/H2O solution. The average molecular weight of SF particles was reduced with increased dissolution time. Four different SF samples were prepared with dissolution times of 5, 30, 60 and 180 min, which were designated as SFC005, SFC030, SFC060 and SFC180, respectively. Initially, SF microparticles were prepared using a 1 M LiCl/DMSO solvent. Microparticles of about 200 μm were prepared-
dc.description.abstracttheir shape was determined by the shear viscosity of the SF solution, regardless of the concentration and molecular weight of SF.
Since formic acid (FA) and hexafluoroisopropanol (HFIP) are the most common solvents used in the EHD fabrication of SF, both the shear and dynamic viscosity of SF in these solvents was investigated. With both FA and HFIP solvents, the mode of the EHD fabrication was determined by the solution plateau modulus, regardless of the concentration and molecular weight of SF. The size of EHD products can be predicted using a rheological parameter. The size of particles can be predicted using the zero shear viscosity, whereas the size of fibers can be predicted using the solution plateau modulus. In conclusion, the proposed rheological parameters for SF solutions may be used in the future for the precise control of EHD fabrications.
-
dc.description.tableofcontentsTABLE OF CONTENTS

Abstract ..................................................................... i
Table of Contents .................................................... ii
List of Tables ........................................................ vii
List of Figures ...................................................... viii

I. Introduction ........................................................... 1

II. Literature Survey ................................................ 5
2.1. Relationship between chain entanglement
and the EHD fabrication .................................. 5
2.1.1. Relationship between chain entanglement
and concentration ...................................... 5
2.1.2. Parameters of chain entanglement ......... 8
2.2. Nanostructure and self-assembly of SF
solutions ............................................................ 11
2.3. Rheological behavior of SF solution ............ 15
2.4. Relationship of SF solution viscosity and the
EHD fabrication ............................................... 17
2.4.1. In FA or HFIP solvent system ............. 17
2.4.2. In other solvent systems ....................... 19
2.5. Fabrication of SF microparticles .................. 23
2.5.1. Fabrication methods of SF microparticles .................................................................... 23

III. Materials and Methods ................................... 26
3.1. Materials .......................................................... 26
3.2. Preparation of regenerated SF ...................... 26
3.3. Physical measurements of SFCs .................. 27
3.4. Fabrication of SFC microparticles with 1M LiCl/DMSO solvent by EHD process ........... 29
3.4.1. SFCs solubility test in LiCl/DMSO solvent ................................................................... 29
3.4.2. EHD fabrication of SFCs with 1 M LiCl/
DMSO solvent .......................................... 29
3.5. EHD fabrication of SFCs with formic acid and
HFIP .................................................................. 30
3.5.1. EHD fabrication for SFCs ..................... 30
3.5.2. Property analysis of SFCs dope solution
.................................................................... 31

IV. Results and Discussion ................................... 32
4.1. Properties of SF .............................................. 32
4.2. Fabrication of SFC microparticles with 1 M LiCl/DMSO by EHD fabrication .................... 36
4.2.1. Determining optimal conditions for SF
dope solution with 1 M LiCl/DMSO ...... 36
4.2.2. EHD fabrication for SFCs with 1 M LiCl/
DMSO ........................................................ 39
4.2.2.1. Concentration effects ........................... 41
4.2.2.2. Effects of dissolution time in CaCl2/
EtOH/H2O solution .............................. 45
4.2.2.3. Spherical microparticle preparation ... 47

4.3. Studies on the rheological parameters of SF solutions affecting the EHD fabrication ..... 50
4.3.1. EHD fabrication of SF with formic acid ................................................................... 50
4.3.1.1. Effects of concentration and molecular weight of SF .......................................... 50
4.3.1.2. Relationship between shear viscosity of SF-FA solution and EHD fabrication
................................................................. 60
4.3.1.3. Relationship between dynamic viscosity of SF-FA solution and EHD fabrication ................................................................. 65
4.3.1.4. Establishment of the plateau modulus of SF-FA solution ...................................... 70
4.3.1.5. Application of solution plateau modulus on the size variation of EHD fabricated products .................................................. 76
4.3.2. EHD fabrication with HFIP ................... 85
4.3.2.1. Effects of concentration and molecular weight of SF ........................................ 85
4.3.2.2. Relationship between shear viscosity of SF-HFIP solution and the EHD fabrication ............................................. 92
4.3.2.3. Relationship between dynamic viscosity
of SF-HFIP solution and EHD fabrication ............................................... 96
4.3.2.4. Application of solution plateau modulus to the EHD fabrication of SF-HFIP solution .................................................. 101
4.4. Prediction of shape and size of SF particles or fibers using solution plateau modulus .................................................... 107

V. Conclusion ........................................................ 113

VI. Reference ........................................................ 115
-
dc.formatapplication/pdf-
dc.format.extent2472670 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectSilk fibroin-
dc.subjectelectrohydrodynamic fabrication-
dc.subjectviscosity-
dc.subjectmicroparticle-
dc.subjectchain entanglement-
dc.subjectplateau modulus-
dc.subject.ddc660-
dc.titleA Study on the Rheological Parameters of Silk Fibroin Solutions for Electrohydrodynamic Fabrication-
dc.title.alternative전기수력학적 제조에서 실크 피브로인 용액의 유변학적 변수에 관한 고찰-
dc.typeThesis-
dc.description.degreeDoctor-
dc.citation.pages132-
dc.contributor.affiliation농업생명과학대학 바이오시스템·소재학부-
dc.date.awarded2015-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share