Browse

Weighted Mnet Penalty for Twice Differentiable Convex Losses on High Dimensions
고차원 자료에서 두 번 미분 가능한 볼록 손실 함수에 대한 WMnet 벌점화 방법 연구

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
김주유
Advisor
김용대
Major
자연과학대학 통계학과
Issue Date
2014-08
Publisher
서울대학교 대학원
Keywords
weighted Mnet penaltytwice differentiable lossesgeneralized linear modeloracle ridge
Description
학위논문 (박사)-- 서울대학교 대학원 : 통계학과, 2014. 8. 김용대.
Abstract
In many regression problems, covariates can be naturally correlated. Kim and Jeon [2014] proposed weighted Mnet penalty which is defined combination of weighted minimax concave penalty(MCP) and weighted ridge penalty. They
showed that the weighted Mnet penalty is useful to squared loss when the covariates of correlations are highly correlated. They also point out that the weighted l2 penalty is equivalent to the Laplacian penalty with certain weights and the weighted Mnet estimator has the oracle property to the squared loss under regular conditions. We extend the weighted Mnet estimator to twice differentiable convex losses. We showed that the weighted l2 penalty to twice differentiable convex losses also can be equivalent to the Laplacian penalty with certain weights and the weighted Mnet has an oracle property on high dimensional model in the sense that it is equal to the oracle ridge estimator with high probability. By simulations and real data analysis, we show that the weighted Mnet penalty is a useful to the other competitors including the elastic net, the Ment and the sparse Laplacian penalty.
Language
English
URI
https://hdl.handle.net/10371/121149
Files in This Item:
Appears in Collections:
College of Natural Sciences (자연과학대학)Dept. of Statistics (통계학과)Theses (Ph.D. / Sc.D._통계학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse