Browse

Rabinowitz Floer homology and coisotropic intersections

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
강정수
Advisor
Urs Frauenfelder
Major
자연과학대학 수리과학부
Issue Date
2014-02
Publisher
서울대학교 대학원
Keywords
Rabinowitz Floer homologyHamiltonian dynamicsFirst integralCoisotropic submanifoldLeafwise intersection
Description
학위논문 (박사)-- 서울대학교 대학원 : 수리과학부, 2014. 2. Urs Frauenfelder.
Abstract
Urs Frauenfelder와 Kai Cieliebak은 Paul Rabinowitz가 자율적 해밀턴 시스템에서 주기궤도들 찾기 위해 제안한 라그랑즈 승수 함수를 사용하여 Rabinowitz Floer homology 이론을 개발하였다.

이 논문에서는 우리는 임의의 여차원을 가지는 여등방성 부분다양체 위의 역학구조를 분석하는데 적합한 여러개의 Lagrange 상수들을 가지는 일반화된 Rabinowitz 함수를 연구할 것이다. 우리는 일반화된 Rabinowitz 함수를 사용하여 여등방성 궤적 교차점, 여등방성 부분 다양체의 전치가능성, 그리고 여등방성 부분다양체의 Rabinowitz Floer homology 등에 관해 연구할 것이다. 우리는 또한 Rabinowitz Floer homology의 Künneth 공식을 유도하여 무한개의 여등방 궤적 교차점을 가지는 여등방성 부분다양체들을 찾을 것이다. 이 연구는 여러 개의 운동 상수 (보존량) 를 가지는 운동 시스템을 연구하는데 중요한 역할을 할 것이다.
Rabinowitz Floer homology theory was developed by Kai Cieliebak and Urs Frauenfelder using a Lagrange multiplier action functional, which was introduced by Paul Rabinowitz in order to detect periodic orbits of autonomous Hamiltonian systems.

In this thesis, we study a generalized Rabinowitz action functional with several Lagrange multipliers, which is well suited for exploring dynamics on coisotropic submanifolds of arbitrary codimensions. Using this, we investigate among others, the existence problem of leafwise coisotropic intersection points, displaceability of coisotropic submanifolds, and Rabinowitz Floer homology for coisotropic submanifolds. We also derive a Künneth formula for the Rabinowitz Floer homology of product coisotropic submanifolds, and this enables us to find a class of coisotropic submanifolds which have infinitely many leafwise coisotropic intersection points. This study will serve as a crucial tool for exploring autonomous dynamical systems with several integrals.
Language
English
URI
https://hdl.handle.net/10371/121278
Files in This Item:
Appears in Collections:
College of Natural Sciences (자연과학대학)Dept. of Mathematical Sciences (수리과학부)Theses (Ph.D. / Sc.D._수리과학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse