Browse
S-Space
College of Natural Sciences (자연과학대학)
Dept. of Mathematical Sciences (수리과학부)
Theses (Ph.D. / Sc.D._수리과학부)
Tangential limits of harmonic functions for subordinate Brownian motions : 종속 브라운 운동에 대한 조화함수의 접선극한
- Authors
- Advisor
- 김판기
- Major
- 자연과학대학 수리과학부
- Issue Date
- 2015-02
- Publisher
- 서울대학교 대학원
- Keywords
- subordinate Brownian motion ; Green function ; Poisson kernel ; non-local operator ; harmonic function ; (non-)tangential limits ; Fatou theorem
- Description
- 학위논문 (박사)-- 서울대학교 대학원 : 수리과학부, 2015. 2. 김판기.
- Abstract
- In this thesis, we study the integral kernel and boundary behavior of harmonic functions for certain non-local operators. First, using elementary calculus only, we give a simple proof that Green function estimates imply the sharp two-sided Poisson kernel estimates for pure-jump subordinate Brownian motions including geometric stable processes. The infinitesimal generators of pure-jump subordinate Brownian motions are non-local operators. Second, we show the existence of tangential limits of regular harmonic functions with respect to such non-local operators in $C^{1,1}$ open sets when the exterior functions are local $L_p$-H\"older continuous functions of order $\beta$.
- Language
- English
- Files in This Item:
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.