Publications

Detailed Information

Manipulation of resonant modes and mode coupling in micromechanical device by electrical field gradient : 전기장 기울임을 이용한 역학소자의 공명모드 조절 및 모드 결합 연구

DC Field Value Language
dc.contributor.advisor박윤-
dc.contributor.author조성완-
dc.date.accessioned2017-07-14T00:57:06Z-
dc.date.available2017-07-14T00:57:06Z-
dc.date.issued2013-08-
dc.identifier.other000000013080-
dc.identifier.urihttps://hdl.handle.net/10371/121508-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 물리·천문학부 물리학 전공, 2013. 8. 박윤.-
dc.description.abstract나노 역학 진동자와 마이크로 역학 진동자는 나노역학시스템(Nano-Electro-Mechanical System)와 마이크로 역학 시스템(Micro-Electro-Mechanical System)에서 가장 기본적인 요소이며 입력된 신호를 다른 형태의 신호나 물리적인 에너지 형태로 변환시키는 역할을 한다. 높은 역학적 품질 인자(Q)를 가진 역학적 진동자는 외부 자극에 대해 민감하게 반응할 수 있으면 전환 과정에서 손실되는 에너지를 줄일 수 있는 장점이 있다. 이러한 높은 품질 인자를 가진 역학적 진동자를 구현하기 위해, 내부 응력을 가진 규소 질화물에 대한 관심이 증가되어 왔으며 이러한 내부 응력은 1 기가 파스칼을 넘어서는 수준에 도달하게 되었다. 이러한 높은 역학적 응력은 역학적 진동자의 진동수를 기존의 규소 기반 역학적 진동자나 역학적 응력이 작은 진동자에 비해 높일 수 있게 되었다. 그리고 역학적 진동자의 움직임을, 외부의 자극이나 추가적인 시호를 제외한 상태에서 높은 품질 인자를 가진 상태로 측정하기 위해 광학적 측정 방법이 사용되었다. 본 논문에서는 우선, 일반적인 반도체 공정 법을 이용하여 만들어진 자가 현수 형식의 끝단 고정형 역학적 진동자와 정사각형 박막 형태의 진동자의 움직임을 광학적으로 측정한 결과를 제시한다. 이러한 끝단 고정형 역학적 진동자와 정사각형 박막 역학 진동자는 전기장 기울임 방법을 이용하여 거동하였다. 광학적 방법을 이용한 측정의 세기를 높이기 위해 파라메트릭 증폭 방법을 이용한 역학적 진동자의 거동 증폭 방법이 사용되었다. 역학적 진동자의 공명진동수와 그 진동수의 2배에 해당하는 신호를 함께 소자에 가함으로서, 외부적인 신호의 증폭 없이도 역학적인 거동 자체가 증가하는 현상을 관찰할 수 있었다. 향상된 광학적 측정법과 전기적인 측정법을 이용하여, 역학적 진동자가 외부의 전기적인 자극 없이 열적인 자극에 의해 움직이는 열-자기진동 현상을 관찰 하였다. 이러한 열-자기진동 현상의 진동수 관측과 함께 측정 세기를 역학적 진동자의 형태와 결합 함으로서 역학적 진동자의 열-자기진동 현상에 의한 모드의 형태를 재현할 수 있었다. 아울러 red-detuned sideband와 blue-detuned sideband 를 이용하여 첫 번째 역학적 진동 모드와 두 번째 역학적 진동모드간 상호 결합 현상 및 진동의 조절 현상을 관찰할 수 있었다.-
dc.description.abstractNano- and Micro-mechanical resonator is basic component of NEMS (Nano-ElectroMechanical System) and MEMS (Micro-ElectroMechanical System) which can transduce input signal into different type of output signal or physical energy. Mechanical resonator with high mechanical Quality factor(Q-factor) can have advantages such as sensitive response to external excitation, low energy loss in transduction process. In order to realize micromechanical and nanomechanical resonator with highest Q-factor, much intereset have been given to silicon nitride whose mechanical stress can be tuned over 1 GPa. Such a high mechanical stress can also allow operation of mechanical resonator at higher resonant frequency than silicon compatible materials with less or without stress. And to precisely investigate mechanical resonators' dynamics even without actuation or pumping signal while preserving their Q-factor in ambient condition, sensitive optical technique was adopted for non-invasive measurement. In this thesis, mechanical resonators from high-stess silicon nitride with a shape of doubly-clamped beam and square membrane were fabricated with conventional microfabrication process and their resonant responses were investigated by optical measurement technique. Doubly-clamped beam and square membrane mechanical resonator was actuated by electrical field gradient force to oscillate at high frequency with high Q-factor. To amplify the oscillation amplitude for enhancement of optical detection, nonlinear parametric amplifcation of mechanical resonator was investigated. With 2f signal applied with resonant frequency f of mechanical resonator, resonant amplitude was amplified without external amplification techniques. With improved optical and rf measurement technique, thermal oscillations of mechanical resonator was studied. At thermal equilibrium, mechanical component can oscillate at its structural resonant mode without external actuation and their resonant frequencies were detected. While measureing their resonant frequencies, resonant mode were also reconstructed by mapping power spectral density on the geometry of mechanical resonator. With measured thermal oscillation modes, mechanical resonators' response to mechanical sidebands(red-, blue-) were investigated. By applying their red-detuned sideband which is the frequency equal to the difference of 1st and 2nd resonant mode, resonant amplitude of 1st resonant mode in mechanical resonator was damped and that of 2nd resonant mode was amplified. With blue-detuned sideband, both 1st and 2nd resonant mode was amplifed more than 20 dB.-
dc.description.tableofcontents1 Introduction 1
1.1 Outline of Thesis . . . 5
1.2 Chapter Outline . . . 8
2 Doubly-clamped beam and membrane mechanical resonator from stoichiometric silicon nitride 11
2.1 Introduction to NEMS andmechanical resonators . . . 12
2.2 Doubly-clamped mechanical resonator with high-stress stoichiometric silicon nitride . . . 19
2.3 Membrane mechanical resonator with high-stress stoichiometric silicon niitride . . . 26
3 Optical measurement and electrical field gradient actuation
technique 35
3.1 Opticalmeasurement of mechanical resonator . . . 36
3.2 Noise in optical measurement . . . 48
3.3 Field gradient actuation of doubly-clameped mechanical oscillator with on-chip electrode . . . 54
3.4 Field gradient actuation of doubly-clameped mechanical oscillator with off-chip electrode . . . 57
3.5 Field gradient actuation of membrane mechanical oscillator with on-chip electrode . . . 60
4 Nonlinear parametric amplification of mechanical resonator with high quality factor by electrical field gradient pumping 63
4.1 Introduction . . .63
4.2 Mechanical Resonator with double electrode geometry . . .65
4.3 Actuation and measurement scheme of oscillation in mechanical resonator . . . 70
4.4 Theoretical background for nonlinear parametric oscillation of mechanical resonator . . . 74
4.5 Pumping power dependence of parametric amplification . . . 80
4.6 Phase dependence of parametric amplification . . . 84
5 Observation of thermal self-oscillation with optical technique 87
5.1 Introduction to self-oscillation . . . 87
5.2 Optical measurement of mechanical modes in thermal equilibrium. . . 91
5.3 Construction of power-spectral image of thermal self-oscillation 103
5.4 Investigation of relative displacement of thermal modes in mechanical oscillator driven by Langevin force . . . 109
6 Mode-splitting of thermal oscillatory mode in micromechanical resonator by mechanical sideband 112
6.1 Micromechanical resonator as a signal mixer and mechanical sideband . . .114
6.2 Control ofmechanical systemby sideband scheme . . . 117
6.3 Mode-splitting of 1st mode by red-detuned mechanical sideband120
6.4 Mode-splitting of 2nd mode by red-detuned mechanical sideband131
7 Mechanical amplification of thermal motion in micromechanical
resonator by mechanical sideband 137
7.1 Mechanical amplificataion of 1st mode by blue-detuned sideband 140
7.2 Mechanical amplification of 2nd mode by blue-detuned sideband 146
-
dc.formatapplication/pdf-
dc.format.extent8323954 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subject마이크로역학진동자-
dc.subject나노역학진동자-
dc.subject광학적측정법-
dc.subject파라메트릭 증폭현상-
dc.subject열-자기진동 현상-
dc.subject역학적인 옆 주파수-
dc.subject.ddc523-
dc.titleManipulation of resonant modes and mode coupling in micromechanical device by electrical field gradient-
dc.title.alternative전기장 기울임을 이용한 역학소자의 공명모드 조절 및 모드 결합 연구-
dc.typeThesis-
dc.contributor.AlternativeAuthorSungwan Cho-
dc.description.degreeDoctor-
dc.citation.pagesiv, xvi-
dc.contributor.affiliation자연과학대학 물리·천문학부(물리학전공)-
dc.date.awarded2013-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share