Browse

Polynomial behavior of weight multiplicities for the affine Kac-Moody algebras $A_n^{(1)}$

DC Field Value Language
dc.contributor.authorBenkart, Georgia-
dc.contributor.authorKang, Seok-Jin-
dc.contributor.authorLee, Hyeonmi-
dc.contributor.authorMisra, Kailash C.-
dc.contributor.authorShin, Dong-Uy-
dc.date.accessioned2009-11-16T04:36:07Z-
dc.date.available2009-11-16T04:36:07Z-
dc.date.issued2001-
dc.identifier.citationCompositio Math. 126 (2001), 91-111en
dc.identifier.issn0010-437X (Print)-
dc.identifier.issn1570-5846 (Online)-
dc.identifier.urihttps://hdl.handle.net/10371/12196-
dc.description.abstractWe prove that the multiplicity of an arbitrary dominant weight for an integrable highest weight representation of the affine Kac-Moody algebra $A_{r}^{(1)}$ is a polynomial in the rank $r$. In the process we show that the degree of this polynomial is less than or equal to the depth of the weight with respect to the highest weight. These results allow weight multiplicity information for small ranks to be transferred to arbitrary ranks.en
dc.language.isoen-
dc.publisherCambridge University Pressen
dc.subjectPolynomial behavioren
dc.subjectWeight Multiplicitiesen
dc.subjectaffine Kac-Moody algebrasen
dc.titlePolynomial behavior of weight multiplicities for the affine Kac-Moody algebras $A_n^{(1)}$en
dc.typeArticleen
dc.contributor.AlternativeAuthor강석진-
dc.contributor.AlternativeAuthor이현미-
dc.contributor.AlternativeAuthor신동의-
dc.identifier.doi10.1023/A:1017584131106-
Appears in Collections:
College of Natural Sciences (자연과학대학)Dept. of Mathematical Sciences (수리과학부)Journal Papers (저널논문_수리과학부)
Files in This Item:
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse