Browse

Development of Korean Gastric Cancer Risk Model using Logistic Regression and Neural Network

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
송민교
Advisor
강대희
Major
의과대학 의과학과
Issue Date
2015-02
Publisher
서울대학교 대학원
Keywords
gastric cancerabsolute riskrisk predictionmodel
Description
학위논문 (박사)-- 서울대학교 대학원 : 의과학과, 2015. 2. 강대희.
Abstract
Introduction: High incidence and mortality rates of gastric cancer demands for reduction of incidence and mortality rates by public intervention strategies in high risk groups and general population, or by preventive efforts by individuals. This study aims to comprehensively evaluate the risk and protective factors of gastric cancer and develop a valid model to predict gastric cancer risk.
Methods: Candidate predictors were selected combining expert opinion and literature search. Using a case-control study with 4,603 Korean subjects, a logistic regression model for linear regression and a neural network model for nonlinear regression were developed. By comparing the discriminatory ability by AUC, one final model was chosen for further development of absolute risk projection model. The developed model was validated using an independent data, a Japanese population-based cohort study.
Results: All 9 factors categorized to be at evidence level of sufficient, probable and possible were used for constructing the final model. Logistic regression model and neural network model did not show a distinct discriminatory ability, AUC of 0.731 vs. 0.732 in men, 0.760 vs. 0.745 in women. For robustness and applicability, logistic regression model was chosen for development of absolute risk model. The model was calibrated using a ratio of expected to observed number of gastric cancer cases, 1.05 (95% CI 0.98 – 1.12) for men and 0.93 (95% CI 0.83 – 1.04) in women.
Conclusions: The mathematical model developed in the present study will help predict the occurrence of gastric cancer for an individual considering combined risk factors which will help at a personalized level by enabling early detection and preventive efforts. Moreover, the model can also be used as a source for developing a national guideline for prevention of gastric cancer and a reference to develop future preventive trials.
Language
English
URI
https://hdl.handle.net/10371/122277
Files in This Item:
Appears in Collections:
College of Medicine/School of Medicine (의과대학/대학원)Dept. of Biomedical Sciences (대학원 의과학과)Theses (Ph.D. / Sc.D._의과학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse