Publications

Detailed Information

Designed synthesis of carbon-based nanocomposites for li-ion batteries : 리튬이온이차전지용 탄소 나노복합재료의 제조

DC Field Value Language
dc.contributor.advisor박원철-
dc.contributor.author장병철-
dc.date.accessioned2017-07-14T01:49:51Z-
dc.date.available2017-07-14T01:49:51Z-
dc.date.issued2014-08-
dc.identifier.other000000021033-
dc.identifier.urihttps://hdl.handle.net/10371/122384-
dc.description학위논문 (박사)-- 서울대학교 융합과학기술대학원 : 나노융합학과, 2014. 8. 박원철.-
dc.description.abstract지난 반세기 동안 나노재료의 조성, 크기 등을 포함하는 구조 및 물성 제어에 관한 많은 연구가 진행되고 있다. 특히, 탄소 재료는 우수한 전기화학적 특성과 안정성 때문에 에너지 저장 및 변환 장치에 적용이 가능하여 전극재료로 많은 연구가 진행되었다. 실제로 탄소재료는 연료전지용 촉매 담체, 이차전지용 전극재료, 슈퍼캐패시터용 전극재료 등으로 널리 사용 및 연구되고 있다. 또한 탄소재료는 나노기술을 접목함으로써 다양한 구조 제어가 가능하고 그에 따른 다양한 물성 제어가 가능하기 때문에 에너지 응용분야의 성능 및 효율향상이 기대가 된다.
일반적으로 탄소나노재료는 유기물 전구체를 고온에서 열처리하여 제조가 가능하며 다양한 합성법을 통해 구조 및 물성 제어가 가능하다. 특히, 전구체 종류와 제조 조건에 따라 물리화학적, 전기적 특성과 같은 다양한 탄소재료의 물성을 제어할 수 있다. 또한 주형합성법과 같은 합성법을 통해 다양한 형상, 구조 및 물성을 갖는 탄소나노재료의 합성 또한 가능하다.
최근에는 탄소나노재료를 기반으로 하여 그래핀, 금속, 금속산화물 등과 같은 재료를 복합화함으로써 탄소재료 본연의 특성을 향상시키려는 연구가 활발히 진행되고 있다.
본 학위 논문에서는 탄소나노재료를 기반으로한 복합재료의 합성 및 리튬이차전지 전극재로의 응용에 대한 내용을 기술하고자 하였다. 구체적으로는, 계면활성제 및 지방산을 탄소 전구체로한 탄소 나노재료의 합성, 이차원 판상 구조를 갖는 금속산화물과 탄소 복합재료의 합성 및 리튬 이차전지 음극재로의 응용, 그래핀과 금속산화물의 복합화를 통한 그래핀/금속산화물 나노 복합재료 합성 및 리튬 이차 전지 음극재 응용에 관한 내용이다.
다양한 방법을 통해 탄소나노재료 및 복합재료의 구조 및 형상을 제어하여 리튬 이차전지 전극재로 적용하였을 때, 기존 소재 대비 월등한 성능 향상 및 내구성 향상을 확인할 수 있었다.
-
dc.description.abstractOver the past decade, the control of elemental composition, size and shape of nanostructures has been major research topic in chemistry of nanostructures. Various designed synthetic methods of carbon-based nanocomposites have been investigated for electrochemical applications including batteries, fuel cells and supercapacitors. These carbon-based nanocomposites have been widely used as electrode materials due to their low cost, wide potential window, good electrical conductivity, high electrochemical stability, and electrocatalytic activity. Recentely, carbon-based nanocomposites with graphene, metal, and metal oxide, have been extensively investigated in order to further improve the intrinsic electrochemical properties.
In this work, facile synthetic methods for carbon-based nanocomposites and their electrochemical application for Li-ion battery anode were reported. Firstly, a new and simple synthetic method of hollow carbon nanospheres was introduced. Monodispersed silica nanoparticles were used as templates and various metallic surfactants were used as carbon sources. Different shaped carbonaceous nanomaterials were obtained through the carbonization of metallic surfactant precursors. Next, two dimensional (2-D) nanomaterials composed of highly monodisperse metal oxide nanoparticles and carbon were synthesized via simple heat treatment process using salt powder as template. Metal oleate complex was used as the precursor for both metal oxide and carbon. Lastly, a metal-oxide/graphene nanocomposite was directly obtained by heat treatment of a mixture of metal-oleate and graphene. The generated metal oxide nanoparticles were homogeneously embedded in the graphene layers, and they acted as mutual spacers in the nanocomposite to prevent the restacking of the graphene layers and the aggregation of nanoparticles.
These carbon-based nanocomposites were shown to be excellent anode materials for Li-ion batteries with high capacity, good rate performance and stable durability.
-
dc.description.tableofcontentsChapter 1. Introduction: Carbon-Based Nanomaterials for Li-Ion Batteries and Dissertation Overview 24
1.1. Introduction 25
1.2. Carbonaceous Nanomaterials for Electrode in Electrochemical Applications 29
1.2.1. Graphitic carbons: graphene 32
1.2.2. Amorphous carbons 34
1.2.3. Carbon-based nanocomposites 37
1.2.4. Various methods for the fabrication of carbon-based nanocomposites 38
1.3. Application of Nanomaterials for Li-Ion Batteries 43
1.3.1. Li-ion batteries 43
1.3.2. Anode materials for Li-ion batteries 50
1.3.2.1. Insertion reaction mechanism: graphite and titanium oxide 53
1.3.2.2. Alloying reaction mechanism: tin and silicon 57
1.3.2.3. Conversion reaction mechanism: tranisition metal oxide 61
1.3.2.4. Carbon based metal or metal oxide nanocomposites 64
1.4. Dissertation Overview 68
1.5. References 70

Chapter 2. Thin-Layered Hollow Carbon Nanostructures by the Direct Pyrolysis of Surfactants 77
2.1. Introduction 78
2.2. Experimental Section 79
2.2.1. Chemicals 79
2.2.2. Characterization methods 79
2.2.3. Preparation of SDS coated PS nanoparticle solutions 80
2.2.4. Preparation of SDS coated SiO2 nanoparticle solutions 80
2.2.5. Synthesis of HCNS using SDS-coated template nanoparticles 80
2.2.6. Synthesis of thin layered carbon materials using non-metallic surfactants 81
2.2.7. Heat treatment experiments of metallic surfactants 82
2.3. Results and Discussion 84
2.4. Conclusion 100
2.5. References 102

Chapter 3. Self-assembled Ferrite/Carbon Hybrid Nanosheets for Lithium-Ion Battery Anodes 105
3.1. Introduction 106
3.2. Experimental Section 110
3.2.1. Chemicals 110
3.2.2. Characterization methods 110
3.2.3. Preparation of 16-nm iron-oxide/carbon hybrid nanosheets 110
3.2.4. Preparation of 30-nm iron-oxide/carbon nanosheets 111
3.2.5. Preparation of 3-D nanocomposites 111
3.2.6. Preparation of 10-nm manganese-ferrite/carbon nanosheets 112
3.2.7. Preparation of electrodes for LIBs 112
3.3. Results and Discussion 115
3.4. Conclusion 144
3.5. References 145

Chapter 4. γ-Fe2O3/Graphene Nanocomposite for Lithium-Ion Battery Anodes 150
4.1. Introduction 151
4.2. Experimental Section 154
4.2.1. Chemicals 154
4.2.2. Characterization methods 154
4.2.3. Preparation of graphene 154
4.2.4. Preparation of iron-oxide nanoparticles/graphene composite 155
4.2.5. Preparation of iron-oxide nanoparticles 155
4.2.6. Preparation of electrodes for LIBs 155
4.3. Results and Discussion 158
4.4. Conclusion 172
4.5. References 173

Chapter 5. Conclusion and Future Works
5.1. Conclusion 179
5.2. Future Works 181
5.3. References 184
-
dc.formatapplication/pdf-
dc.format.extent11540942 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subject탄소재료-
dc.subject금속산화물 나노입자-
dc.subject그래핀-
dc.subject나노 복합재-
dc.subject리튬이온 이차전지-
dc.subjectCarbonaceous nanomaterials-
dc.subjectmetal oxide nanoparticles-
dc.subjectGraphene-
dc.subjectnanocomposites-
dc.subjectLi-ion battery anode-
dc.subject.ddc620-
dc.titleDesigned synthesis of carbon-based nanocomposites for li-ion batteries-
dc.title.alternative리튬이온이차전지용 탄소 나노복합재료의 제조-
dc.typeThesis-
dc.contributor.AlternativeAuthorByungchul Jang-
dc.description.degreeDoctor-
dc.citation.pages199-
dc.contributor.affiliation융합과학기술대학원 나노융합학과-
dc.date.awarded2014-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share