Browse

Review Rating Applied Social Recommender System
사둉자 평론을 이용한 소셜 추천 기법

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
장해
Advisor
김종권
Major
공과대학 전기·컴퓨터공학부
Issue Date
2013-08
Publisher
서울대학교 대학원
Keywords
Recommender SystemSocial NetworkReview RatingMatrix FactorizationCollaborative Filtering
Description
학위논문 (석사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2013. 8. 김종권.
Abstract
사용자의 역사 평점기록을 통하여 추천을 해주는 협업 필터링 방법이 광범위하게 적용되고 있다. 그런데 현실 생활에서 사람들은 흔히 친구나 지인의 의견을 고려하여 판단을 내린다. 이러한 소셜 관계를 고려한 소셜 추천기법에서 친구에게 받는 영향력을 정확하게 반영하는 사용자 사이의 유사도 정보가 필요 된다. 기존 방법에서는 사용자 사이의 유사도를 사용자가 아이템에 대한 평점만 고려하여 계산하였는데 본 연구는 사용자가 작성한 평론에 대한 평가를 사용자 사이의 유사도 추출에 적용하여 기존 추천 기법보다 시스템의 성능을 향상시켰다. Epinions에서 크롤링을 통하여 얻은 데이터로 소셜 추천 시스템 모델에 적용하여 실험한 결과 성능향상을 증명하였다.
Collaborative filtering (CF) has been widely used in recommender sys-tems, which uses historical user ratings or purchase records as input to predict items that users may be interested. But this method does not reflect the real world situation. People in real world tend to ask their friends or expertise in that field before making a decision. By considering the social relation, some social recommend approaches had been proposed and achieve better performance comparing with traditional recommend meth-ods. In these researches, the strength of social relation is usually measured by similarity between users. And only item rating data is used to calculate the similarity. However, if two friends have no items rated in common, the similarity between them will be zeros. In our research, we use another data source, review rating data, to find more similarity between users. By doing experiment on crawled Eipinions dataset, we confirm the improved prediction accuracy.
Language
English
URI
http://hdl.handle.net/10371/122997
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Electrical and Computer Engineering (전기·정보공학부)Theses (Master's Degree_전기·정보공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse