Publications

Detailed Information

Effects of lithium doping on solution processed ZnO/IGZO thin film transistors : 용액공정을 이용한 ZnO/IGZO 박막 트랜지스터에서의 리튬 도핑 효과

DC Field Value Language
dc.contributor.advisor홍용택-
dc.contributor.author장종수-
dc.date.accessioned2017-07-14T03:02:56Z-
dc.date.available2017-07-14T03:02:56Z-
dc.date.issued2016-02-
dc.identifier.other000000133223-
dc.identifier.urihttps://hdl.handle.net/10371/123210-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 홍용택.-
dc.description.abstractThe solution-processed oxide thin-film transistors has attracted attention because of the possibility of its low-cost fabrication and large area application such as display panels. Also oxide semiconductors are expected to be the active layer material of TFTs in next generation flat panel displays because of its superior characteristic to the amorphous silicon, which is used in current flat panel displays.
This thesis handle the fabrication of solution-processed oxide TFTs with lithium doping and its electrical characteristics. For the oxide channel layer, spin coated zinc oxide (ZnO) thin films and indium gallium zinc oxide (IGZO) thin films were used as an active layer respectively. The process conditions for each solution-processed oxide TFTs were carefully optimized to obtain reasonable performance and its TFTs characterization was carried out using various measurements tools. First, I investigated about the effects of lithium doped zinc oxide (Li-ZnO) TFTs with various lithium (Li) concentration on the performance and environmental stability of TFTs behavior. It was found that appropriate amount of lithium doping considerably reduced the background conductivity of ZnO films. Moreover, lithium doping improved the orientation of ZnO crystallites along c-axis. In case of 5 at. % lithium doped ZnO TFTs has a higher field-effect mobility of 3.07 cm2/V s than others. However, 15 and 25 at. % Li doped ZnO TFTs showed good environmental stability with reasonable on/off current ratio and saturation mobility under ambient conditions. Second, lithium doped indium gallium zinc oxide (Li-IGZO) TFTs also showed the enhanced performance with appropriate amount of lithium doping. In contrast with lithium doped ZnO films, the lithium doped IGZO thin films showed the amorphous phase. However lithium doping reduced the oxygen vacancies and enhanced metal oxide bonding. The 5 % (mole ratio) lithium doped IGZO film showed the lowest area ratio of peak in oxygen vacancies with 7.16%. In case of the 15 % lithium doped IGZO film showed the highest area ratio of peak in metal oxygen bonding. In addition, electric characteristics of TFTs showed the enhanced saturation mobility and on/off current ration. Especially the 15 % lithium doped IGZO TFTs have four times higher saturation mobility (3.11 cm2/Vs) than un-doped IGZO TFTs (0.77 cm2/Vs) with annealing temperature 400 °C. From both solution-processed lithium doped ZnO and IGZO TFTs characteristics, we concluded that appropriate amount of lithium doping can enhance the saturation mobility on solution processed oxide TFTs with reasonable on/off current ratio.
-
dc.description.tableofcontentsChapter 1 Introduction 1

Chapter 2 Literature review 4
2.1 Thin-film transistor (TFT) basic principles 4
2.1.1 Basic concepts and structures of TFTs 4
2.1.2 TFTs characterization 8
2.2 Metal oxide semiconductors 12
2.2.1 Zinc Oxide (ZnO) and Indium Gallium Zinc Oxide (IGZO) 12
2.2.2 Indium gallium zinc oxide (IGZO) 13
2.3 Solution deposition methods 15

Chapter 3 Experiments 20
3.1 Experiment on Li doped ZnO thin-film transistor 20
3.1.1 Preparation of precursor solution 20
3.1.2 Fabrication of Li doped ZnO TFTs 20
3.1.3 Measurement of Li doped ZnO films and device characteristics 22
3.2 Experiment on Li doped IGZO thin-film transistor 22
3.2.1 Preparation of precursor solution 22
3.2.2 Fabrication of Li doped IGZO TFTs 23
3.2.3 Measurement of Li doped IGZO films and device characteristics 24

Chapter 4 Results and Discussions 25
4.1 Solution processed Li doped ZnO thin-film transistor 25
4.1.1 Characterization of Li doped ZnO films 25
4.1.2 Electrical characteristics of Li doped ZnO TFTs 30
4.1.3 Environmental stability of Li doped ZnO films 33
4.2 Solution processed Li doped IGZO thin-film transistor 38
4.2.1 Characterization of Li doped IGZO films 38
4.2.2 Electrical characteristics of Li doped IGZO TFTs 42

Chapter 5 Conclusion 45

Bibliography 47

초 록 54
-
dc.formatapplication/pdf-
dc.format.extent1853945 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectthin film transistors-
dc.subjectsolution-process-
dc.subjectzinc oxide-
dc.subjectindium gallium zinc oxide-
dc.subjectlithium doping-
dc.subject.ddc621-
dc.titleEffects of lithium doping on solution processed ZnO/IGZO thin film transistors-
dc.title.alternative용액공정을 이용한 ZnO/IGZO 박막 트랜지스터에서의 리튬 도핑 효과-
dc.typeThesis-
dc.contributor.AlternativeAuthorJang, Jong Su-
dc.description.degreeMaster-
dc.citation.pagesvii, 55-
dc.contributor.affiliation공과대학 전기·컴퓨터공학부-
dc.date.awarded2016-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share