Publications

Detailed Information

Numerics Applied Nanofluid Analysis in a Square Array Subchannel

DC Field Value Language
dc.contributor.advisorKune Y. Suh-
dc.contributor.author주바이르-
dc.date.accessioned2017-07-14T03:19:45Z-
dc.date.available2017-07-14T03:19:45Z-
dc.date.issued2015-08-
dc.identifier.other000000067004-
dc.identifier.urihttps://hdl.handle.net/10371/123496-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 에너지시스템공학부(원자핵공학과), 2015. 8. 서균렬.-
dc.description.abstractThis dissertation treats the thermohydrodynamic performance of
alumina (Al2O3) nanofluid in a square array subchannel featuring pitch-to
diameter (P/D) ratio of 1.25 and 1.35 to check its applicability in a typical
Pressurized Water Reactor (PWR) rod bundle under single phase turbulent
flow condition. Two fundamental aspects of thermal hydraulics viz.
augmentation of convective heat transfer coefficient and accompanied
pressure drop have been discussed using pure water and different volume
concentrations (0.5%, 1.5% and 3.0%) of water/alumina (Al2O3) nanofluids as
coolant.
A widely used and commercially available CFD package STARCCM+
(ver. 9.06.011) has been utilized to carry out numerical simulation by
setting up flow as single phase, incompressible and turbulent for different
inlet Reynolds number, Re spanning from 3×105 to 6×105. The realizable k-ε
model is implemented to simulate turbulence inside subchannel. Despite the
results of a simulation performed in a single subchannel may not be reliable
for analyzing the entire rod bundle, however, their quantitative and qualitative
similarity can readily be utilized as a preliminary step in fixing
thermohydrodynamic parameters of a rod bundle.
The numerical results revealed that convective heat transfer
coefficient, h (W/m2.K) is augmented with increasing nanoparticle volume
concentration in the subchannel geometry. While for the same inlet Re,
maximum heat transfer increment of about 22% is achieved for 3.0% particle
volume concentration of alumina nanofluid, using same mass flow rate at inlet
boundary and for same vol.% it is observed that convective heat transfer
coefficient of nanofluid is slightly lower compared to pure water.
The pressure drop is found to be increased significantly with the
augmentation of particle volume concentration of alumina nanofluid due to
increased viscosity and density and in case of 3.0% volume concentration
pressure drop increment is about 56% compared to that of pure water.
Finally, a multiple regression analysis has been performed to propose
a new correction factor for an existing correlation of square array subchannel
to obtain Nusselt number, Nu more accurately for nanofluids in such
geometry.
-
dc.description.tableofcontentsContents
Abstract……………………………………………….... i
Acknowledgement……………………………………... iii
Contents………………………………………………... iv
List of Tables…………………………………………... vii
List of Figures………………………………………….. viii
Acronyms………………………………………………. x
Chapter 1 Introduction…………………………………. 1
1.1 Background and Motivation………………………...
5
1.2 Nuclear Applications of Nanofluid…………………. 7
1.2.1 PWR Main Coolant Application………………… 8
1.2.2 ECCS Application………………………………. 9
1.2.3 Severe-Accident Application…………………….
9
1.3 State of the Art on Convective Heat Transfer
Enhancement by Nanofluid…………………………
10
1.3.1 Experimental Studies…………………………… 11
1.3.2 Numerical Studies……………………………….
14
1.4 State of the Art on Simulation of Rod Bundles…….. 16
Chapter 2 Overview of Nanofluid Heat Transfer……… 19
2.1 Parameters Affecting Thermal Conductivity of
Nanofluids…………………………………………...
19
2.1.1 Effect of Particle Volume Fraction (?)………….. 20
2.1.2 Effect of Base Fluid……………………………... 20
2.1.3 Effect of Particle Size…………………………… 21
2.1.4 Effect of Temperature……………………………
22
2.2 Thermal Conductivity Enhancement Mechanisms of
Nanofluid……………………………………………
23
2.2.1 Brownian Motion……………………………….. 23
2.2.2 Clustering of Nanoparticles……………………... 25
2.2.3 Liquid Layering around Nanoparticles………….. 27
2.2.4 Ballistic Phonon Transport in Nanoparticles……. 27
2.2.5 Near Field Radiation……………………………..
28
2.3 Effect of Particle Deposition of Heater Surface……. 28
v
2.4 Chemical and Physical Stability of Nanofluid……… 29
Chapter 3 Overview of CFD and Star-CCM+…………. 31
3.1 Definition of CFD…………………………………...
31
3.2 Governing Equations of CFD……………………….
31
3.3 Elements of a CFD Code…………………………… 32
3.3.1 Pre-processor……………………………………. 33
3.3.2 Solver……………………………………………. 33
3.3.3 Post-processor……………………………………
34
3.4 Properties of Numerical Solutions………………….. 35
3.4.1 Consistency……………………………………… 35
3.4.2 Stability………………………………………….. 35
3.4.3 Convergence…………………………………….. 36
3.4.4 Conservation…………………………………….. 36
3.4.5 Boundedness…………………………………….. 36
3.4.6 Realizability……………………………………... 37
3.5 Introduction to Star-CCM+…………………………. 37
Chapter 4 Methodology of Numerical Modeling……… 39
4.1 Determination of Physical Properties of Nanofluid…
39
4.2 Methodology of Numerical Modeling……………… 41
4.2.1 Computational Domain…………………………. 41
4.2.2 Boundary Conditions……………………………. 42
4.2.3 Physics Set-up…………………………………... 43
4.2.4 Selection of Turbulence Model…………………. 44
4.2.5 Convergence of Numerical Solution……………. 46
4.2.6 Wall y+ Values…………………………………… 48
Chapter 5 Numerical Results and Discussion………….. 50
5.1 Mesh Convergence Test …………………………….
50
5.2 Validation of Numerical Model…………………….. 52
5.3 Validation of Turbulence Model for Nanofluid……..
54
vi
5.4 Results and Discussion……………………………... 55
5.4.1 Temperature……………………………………... 55
5.4.2 Velocity………………………………………….. 56
5.4.3 Pressure………………………………………….. 56
5.4.4 Turbulent Kinetic Energy……………………….. 57
5.4.5 Nu and h for Constant Inlet Re………………….. 58
5.4.6 Comparison of Numerical Results against
Correlations……………………………………...
61
5.4.7 Heat Transfer Coefficient for Constant Mass
Flow Rate………………………………………...
63
5.4.8 Pressure Drop……………………………………
64
5.5 Proposed New Correction Factor…………………… 66
Conclusion……………………………………………… 67
Nomenclature…………………………………………... 69
References……………………………………………… 71
-
dc.formatapplication/pdf-
dc.format.extent13019164 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectSubchannel Analysis-
dc.subjectNumerical Simulation-
dc.subjectPWR Type Reactor-
dc.subject.ddc622-
dc.titleNumerics Applied Nanofluid Analysis in a Square Array Subchannel-
dc.typeThesis-
dc.description.degreeMaster-
dc.citation.pages90-
dc.contributor.affiliation공과대학 에너지시스템공학부-
dc.date.awarded2015-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share