Publications

Detailed Information

헬리콥터 동적 구성품을 고려한 로터 시스템의 하중 해석

DC Field Value Language
dc.contributor.advisor신상준-
dc.contributor.author조해성-
dc.date.accessioned2017-07-14T03:30:00Z-
dc.date.available2017-07-14T03:30:00Z-
dc.date.issued2013-02-
dc.identifier.other000000010063-
dc.identifier.urihttps://hdl.handle.net/10371/123694-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 기계항공공학부, 2013. 2. 신상준.-
dc.description.abstract회전익 항공기의 공력 환경은 고정익 항공기에 비해 상당히 복잡
하다고 알려져 있다. 고속으로 회전하는 블레이드에 의해 비대칭적
인 공력 환경은 허브를 통하여 동체로 전달되며, 동체를 진동시키는
가진력으로 작용한다. 이 같은 항공기 기체의 진동은 동체뿐만 아니
라 고속으로 회전하는 동적 구성품에도 영향을 끼친다. 따라서 구성
품 자체의 고속 회전으로 인한 하중뿐만 아니라 로터로부터 전달된
가진력 역시 영향을 끼쳐 복합 다중의 하중을 받게 된다.
세장비가 큰 블레이드는 기하학적으로 비선형 대변형을 유발하며,
앞서의 비대칭적인 공력 현상과 함께 빠른 회전으로 인한 관성력
그리고 재료의 특성에 의한 탄성력이 동시에 작용하여 복잡한 공력
탄성학적 특성을 보이게 된다. 이 같은 현상들은 연계되어 동시에
일어나고 이에 따라 구조/유체/동적 구성품 해석 모델의 연계 해석
이 필수적이다. 이에 본 논문에서는 기존의 기하학적 정밀 보 이론
과 유한상태 동적 유입류 모델을 이용한 구조/유체 해석 모델을 확
장하여 상태-공간 방적식으로 구성된 동적 구성품을 결합한 구조/
유체/동적 구성품 모델을 결합한 풍통 트림 해석 모델을 개발하였
다. 결합 기법은 연성 결합 기법을 적용하여 트림해석을 수행하였으
며 이 트림 해석을 초기값으로 하여 천이 응답 해석을 수행하였다.
동적 구성품의 경우 상태-공간 방정식으로 모델링하여 4차
Runge-Kutta 시간 적분 기법을 적용하였다. 트림 및 천이응답해석
에 따른 결과는 구조 모델에 작용하는 하중 및 공력에 있어 동일한
해석 모델을 적용한 CAMRAD II와 비교 및 검증하였다.
-
dc.description.tableofcontents그림 목차·······························································ⅲ
표 목차·································································ⅵ

제 1 장 서 론 ····················································1
1.1. 논문 배경····················································1
1.2. 선행 연구 현황·············································4
1.2.1. 구조 해석 분야 ··········································4
1.2.2. 동적 구성품 해석 분야··································5
1.3. 논문 목적 및 범위··········································8

제 2 장 이론적 해석 절차·····································19
2.1. 구조 해석 모델············································19
2.2. 동적 구성품 해석 모델···································22
2.3. 공력 해석 모델············································29
2.4. 트림 해석 모델············································32
2.5. 천이 응답 해석 모델 ····································34
2.6. 래그 운동 감쇠기 해석 모델··························· 34

제 3 장 수치 해석 결과 ······································48
3.1. 구조 해석 모델···········································48
3.1.1. 블레이드 해석 모델·································· 48
3.1.2. 동적 구성품 해석 모델······························ 48
3.2. 공력 해석 모델··········································49
3.3. 트림 해석 모델··········································49
3.4. 천이 응답 해석 모델 ···································51
3.5. 래그 운동 감쇠기 해석 모델························· 53

제 4 장 결 론·················································82
4.1. 결론········· ·············································84
4.2. 향후 추천 연구··········································86

참고문헌·······················································89
부록····························································92
-
dc.formatapplication/pdf-
dc.format.extent2969848 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoko-
dc.publisher서울대학교 대학원-
dc.subject.ddc621-
dc.title헬리콥터 동적 구성품을 고려한 로터 시스템의 하중 해석-
dc.typeThesis-
dc.description.degreeMaster-
dc.citation.pages117-
dc.contributor.affiliation공과대학 기계항공공학부-
dc.date.awarded2013-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share