Publications

Detailed Information

Density functional study on the thermal stability of RMn2O5 (R=Bi, Y, Gd, Pr or Sm)

DC Field Value Language
dc.contributor.advisorCho, Maenghyo-
dc.contributor.advisorCho, Kyeongjae-
dc.contributor.author이진철-
dc.date.accessioned2017-07-14T03:36:36Z-
dc.date.available2017-07-14T03:36:36Z-
dc.date.issued2015-02-
dc.identifier.other000000025254-
dc.identifier.urihttps://hdl.handle.net/10371/123810-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 기계항공공학부, 2015. 2. Cho, Maenghyo; Cho, Kyeongjae.-
dc.description.abstractHigh throughput computational screening methods based on density functional theory has been an extraordinary success, but calculating the thermal stability of heavy and rare earth evolved transition metal oxide compounds still remain a challenge. In this work, by using a mixed GGA and GGA+U method, we have investigated the heavy and rare earth elements effect on predicting thermal stability of RMn2O5 (R=Bi, Y, Gd, Pr or Sm) compounds.
The temperature phase diagram constructed from the DFT simulation without R site correction are demonstrate to show good prediction on the decomposition reactions, but the predicted temperature gives an underestimation comparing to the existing experimental data. The d/f orbital charge of R site elements indicate uncorrected rare earth elements could induce certain amount of simulation inaccuracy similar to transition metal elements and the amount of charges in these orbitals shows liner relationship with the prediction error. Our GGA+U correction results demonstrate that further correction on R site elements (same to transition metal elements) could effectively improve the accuracy of thermal stability prediction without introducing other high computational cost methods.
-
dc.description.tableofcontentsAbstract
Nomenclatures
List of Figures
List of Tables
Chapter 1 Introduction
Chapter 2 Methodology
2.1 Computational Methods
2.2 Energy Corrections
2.3 Structure thermal stability calculation
Chapter 3 Result and Discussion
3.1 Lattice parameters
3.2 Thermal stability
3.2.1 BiMn2O5
3.2.2 RMn2O5 (R=Pr, Sm, Gd or Y)
3.3 Error Analysis
Chapter 4 Conclusion
Bibliography
초 록
-
dc.formatapplication/pdf-
dc.format.extent2001132 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectDFT-
dc.subjectThermal stability prediction-
dc.subjectRare earth elements-
dc.subject.ddc621-
dc.titleDensity functional study on the thermal stability of RMn2O5 (R=Bi, Y, Gd, Pr or Sm)-
dc.typeThesis-
dc.description.degreeMaster-
dc.citation.pages40-
dc.contributor.affiliation공과대학 기계항공공학부-
dc.date.awarded2015-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share