Publications

Detailed Information

Mechanisms of pH regulation in rat trigeminal ganglion neurons

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

황성민

Advisor
박경표
Major
치과대학 치의학과
Issue Date
2014-02
Publisher
서울대학교 대학원
Keywords
Trigeminal ganglionIntracellular pHAction potentialsTransient receptor potential vanilloid 1Plasma membrane Ca2+/ATPaseNa+/H+ exchangersNa+/HCO3- cotransporters
Description
학위논문 (박사)-- 서울대학교 대학원 : 치의학과, 2014. 2. 박경표.
Abstract
The effect of intracellular acidification and subsequent pH recovery in sensory neurons has not been well characterized. I have studied the mechanisms underlying Ca2+-induced acidification and subsequent recovery of intracellular pH (pHi) in rat trigeminal ganglion (TG) neurons and report their effects on neuronal excitability. Glutamate (500 µM) and capsaicin (1 µM) increased intracellular Ca2+ concentration ([Ca2+]i) with a following decrease in pHi. The recovery of [Ca2+]i to the pre-stimulus level was inhibited by LaCl3 (1 mM) and O-vanadate (10 mM), a plasma membrane Ca2+/ATPase (PMCA) inhibitor. Removal of extracellular Ca2+ also completely inhibited the acidification induced by capsaicin. TRPV1 was expressed only in small and medium sized TG neurons. mRNA for Na+/H+ exchanger type 1 (NHE1), pancreatic Na+-HCO3- cotransporter type 1 (pNBC1), NBC3, NBC4 and PMCA types 1-3 were detected by RT-PCR. pHi recovery was significantly inhibited by pretreatment with NHE1 or pNBC1 siRNA. I found that the frequency of action potentials (AP) was dependent on pHi. Application of the NHE1 inhibitor 5-(N-ethyl-N-isopropyl) amiloride (5 μM
EIPA) or the pNBC1 inhibitor 4,4-di-isothiocyano-stilbene-2,2-sulfonic acid (500 µM
DIDS) delayed pHi recovery and decreased AP frequency. Simultaneous application of EIPA and DIDS almost completely inhibited APs.
In summary, These results demonstrate that the rise in [Ca2+]i in sensory neurons by glutamate and capsaicin causes intracellular acidification by activation of PMCA type 3, that the pHi recovery from acidification is mediated by membrane transporters NHE1 and pNBC1 specifically, and that the activity of these transporters has direct consequences for neuronal excitability.
Language
English
URI
https://hdl.handle.net/10371/125165
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share