Browse

Ruthenium-based Light Harvesting Complexes
루테늄 기반의 광수확 복합체 연구

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
블라이포글 아론
Advisor
손병혁; Katja Heinze
Major
자연과학대학 화학부
Issue Date
2016-02
Publisher
서울대학교 대학원
Keywords
rutheniumluminescencetridentate ligandselectron transferenergy transferredox chemistry
Description
학위논문 (박사)-- 서울대학교 대학원 : 화학부 고분자화학전공, 2016. 2. Katja Heinze.
Abstract
루테늄(II)의 피리딘 착화합물은 염료감응 태양전지 및 광촉매 등에 다양하게 활용되어 왔다. 그 중 [Ru(bpy)3]2+ 는 루테늄(II) 착화합물 가운데 가장 잘 알려진 착화합물로서 1 μs 수준의 긴 수명을 가진 3MLCT 여기 상태와 10 %에 달하는 발광 양자 효율이 특징이다. [Ru(bpy)3]2+ 는 키랄성 화합물이며 리간드가 비대칭적으로 치환되거나 rac-, meso-올리고핵 착화합물을 만들게 되는 경우 입체이성질체를 가지게 된다. 이에 반해 [Ru(tpy)2]2+ 처럼 세 자리 리간드가 두 개 결합되어 있는 착화합물의 경우 비키랄성이기 때문에 입체이성질체의 형성을 막을 수 있다. 그러나 [Ru(bpy)3]2+ 의 광물리적 성질은 우수하지 않은 편으로 3MLCT 여기 상태 수명은 0.2 ns 정도에 불과하며 발광 양자 효율은 0.0007 % 이하이다. [Ru(bpy)3]2+ 에 치환기를 결합시키거나 리간드의 결합각을 90o 로 늘리면 발광 능력이 있는 3MLCT 상태의 특성을 뚜렷하게 향상시킬 수 있다.
이러한 전략에 따라 본 학위논문연구에서는 새로운 루테늄(II) 착화합물을 합성 및 분석하였다. 에스터 치환기를 결합하고 더 큰 결합각을 가지는 리간드를 사용함으로써 착화합물의 3MLCT 수명 시간을 841 ns 로 늘리고 양자 효율을 1.1 % 로 향상시켰으며, 새로운 착화합물이 [Ru(bpy)3]2+와 비교했을 때 상당한 수준으로 향상된 광안정성을 가짐을 확인하였다. 합성된 착화합물이 발광 전기화학 소자의 발광체로 활용되었을 때 붉은 빛에서부터 근적외선에 해당하는 영역의 빛을 전기발광하는 것을 관찰하였다. 또한 이를 염료감응 태양 전지의 광수용체로 사용하였을 때에는 소자의 빛-에너지 변환 효율이 0.26 %에 이른다는 것을 확인하였다. 일전자 산화종에서의 Ru(II)과 Ru(III) 사이 금속간 상호 작용을 연구하기 위해 이성질체 분리가 완벽하게 된 두개의 핵을 가진 루테늄(II) 착화합물을 산화시켰다. 이핵(二核) 화합물의 두 루테늄 중심원자들이 서로 다른 산화-환원 특성을 가지므로 원자가전자들이 편재화되어 금속간 상호작용은 관찰되지 않았다. 또한 이와 비슷하게 단핵(單核) 루테늄(II) 착화합물의 산화반응과 자발적인 환원과정을 연구했다.
고체상 합성법을 이용하여 bis(terpyridine) 루테늄(II) 착화합물과 쿠마린 발광체가 각각 에너지 받개와 주개로 구성된 에너지 전이 시스템을 제조하였다. 루테늄 착화합물과 쿠마린은 서로 다른 개수의 글라이신 분자 결합으로 연결되어 있는데, 글라이신 단위의 개수가 적은 경우 (0 또는 1) 쿠마린으로부터 루테늄 발광체로 효율적인 에너지 전이가 일어나지만 글라이신 단위의 개수가 2개만 되어도 에너지 전이가 차단된다.
전하 주개, 발광체, 전하 받개로 구성된 나노복합체에서 bis(terpyridine) 루테늄(II) 착화합물을 발광체로 활용했을 때 빛에 의한 전하 분리 현상을 관찰하였다. 여기서 Triphenylamine을 포함하는 블록공중합체와 ZnO 나노막대를 각각 전자 주개와 받개로 사용하였는데, 빛을 쬐어주면 발광체의 전자가 ZnO 나노막대로 주입되는 한편 정공이 triphenylamine을 포함한 블록공중합체로 전이되는 것을 확인하였다.
Polypyridyl complexes of ruthenium(II) have a plethora of applications, e.g. in dye-sensitized solar cells and as photocatalysts. [Ru(bpy)3]2+ is one of the most prominent ruthenium(II) complexes featuring long-lived 3MLCT excited states with a lifetime of 1 µs and a luminescence quantum yield of 10%. [Ru(bpy)3]2+ is chiral and can form stereoisomers when the ligands are substituted unsymmetrically or in the case of oligonuclear rac/meso-complexes. Bis(tridentate) complexes such as [Ru(tpy)2]2+ are achiral and thus, circumvent stereoisomers. However, [Ru(tpy)2]2+ features disappointing photophysical properties with a 3MLCT lifetime of around 0.2 ns and a quantum yield ≤ 0.0007%. The attachment of substituents on [Ru(tpy)2]2+ as well as the enlargement of ligand bite angles to 90° provide considerably improved properties of the emitting 3MLCT states.
Following this strategy, novel bis(tridentate) ruthenium(II) complexes were developed, synthesized and characterized in this work. The attachment of ester substituents and the use of ligands with enlarged bite angles lead to 3MLCT lifetimes of up to 841 ns and quantum yields of up to 1.1%. The novel bis(tridentate) complexes feature a significantly higher photostability compared to tris(bidentate) [Ru(bpy)3]2+. The complexes were used as emitter in light-emitting electrochemical cells and show electroluminescence with a deep red color reaching into the NIR. Likewise, the complexes were tested as light harvesters in dye-sensitized solar cells and achieve light-to-energy efficiencies of up to 0.26%.
Dinuclear, stereochemically defined ruthenium(II) complexes were oxidized in order to study the metal-metal interaction between Ru(II) and Ru(III) in the one-electron oxidized species. The different redox properties of the two ruthenium centers in the dinuclear compounds lead to a valence-localized situation with no metal-metal interaction observed. Alike, the oxidation of a mononuclear ruthenium(II) complex and its spontaneous back reduction were studied.
Energy transfer systems were synthesized via a solid-phase synthesis. A bis(terpyridine) ruthenium(II) complex serves as energy acceptor and is connected via a different number of glycine units to a coumarin chromophore serving as energy donor. Efficient energy transfer from the coumarin to the ruthenium chromophore is feasible for a small number (0, 1) of glycine units while two glycine units prevent efficient energy transfer.
Light-induced charge separation was achieved when a bis(terpyridine) ruthenium(II) complex was used as chromophore in a donor-chromophore-acceptor nanocomposite. A triphenylamine-containing block-copolymer was used as electron donor and ZnO nanorods as electron acceptor. Upon irradiation of the chromophore electrons are injected into the ZnO nanorods and electron holes are transferred to the triphenylamine-containing block-copolymer.
Language
English
URI
https://hdl.handle.net/10371/125296
Files in This Item:
Appears in Collections:
College of Natural Sciences (자연과학대학)Dept. of Chemistry (화학부)Theses (Ph.D. / Sc.D._화학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse