Publications

Detailed Information

Studies on prediction of SPS1 gene function and microRNA transcriptional regulatory element by bioinformatical analysis

DC Field Value Language
dc.contributor.advisor이병재-
dc.contributor.author이광희-
dc.date.accessioned2017-07-14T06:01:21Z-
dc.date.available2017-07-14T06:01:21Z-
dc.date.issued2012-08-
dc.identifier.other000000003078-
dc.identifier.urihttps://hdl.handle.net/10371/125370-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 협동과정 생물정보학전공, 2012. 8. 이병재.-
dc.description.abstractBioinformatics is an important area to analyze the massive biological data and predict the biological meanings using computational and statistical methods. Since the massive and highly qualified data have been accumulated by development of microarray technology, researches for finding biological meanings through predicting gene functions and transcriptional regulatory elements by using bioinformatical approaches are actively progressed. In these studies, we show the predicted and confirmed results for gene function and transcriptional regulatory element through two examples, selenophosphate synthetase 1 (SPS1) and microRNA genes.
For example predicting gene function, we used SPS1 which functions are unknown yet. There are two selenophosphate synthetases (SPSs) in higher eukaryotes, SPS1 and SPS2. Of these two isotypes, only SPS2 catalyzes selenophosphate synthesis. Although SPS1 does not contain selenophosphate synthesis activity, it was found to be essential for cell growth and embryogenesis. The function of SPS1, however, has not been elucidated. Using microarray data from obtained SPS1 knockdown, differentially expressed genes were identified using two-way analysis of variance methods and clustered according to their temporal expression pattern. Gene ontology analysis was performed against differentially expressed genes and gene ontology terms related to vitamin B6 biosynthesis were found to be significantly affected at the early stage (day 3). Interestingly, genes related to defense and amino acid metabolism were affected at the later stage (day 5) following knockdown. Levels of pyridoxal phosphate, an active form of vitamin B6, were decreased by SPS1 knockdown. Treatment of SL2 cells with an inhibitor of pyridoxal phosphate synthesis resulted in both a similar pattern of expression as that found by SPS1 knockdown and the formation of megamitochondria, which is the major phenotypic change observed by SPS1 knockdown. These results indicate that SPS1 regulates vitamin B6 synthesis, which in turn impacts various cellular systems such as amino acid metabolism, defense and other important metabolic activities.
For example for predicting transcriptional regulatory elements, we selected miRNA genes. miRNAs are important post-transcriptional regulators of various biological processes. Although our knowledge of miRNA expression and regulation has increased considerably in recent years, the regulatory elements for miRNA gene expression, especially for intergenic miRNAs, are not fully understood. We identified the differentially methylated regions (DMRs) occurring 1000 bp upstream from all miRNAs in human neuroglioma cells using microarrays and discovered a unique sequence motif C[N]6CT. This motif was preferentially located within 400 bp or from 800–1000 bp upstream of the intergenic miRNA start, corresponding to the highly methylated region. Interestingly, treatment of cells with a methyl transferase inhibitor (5-aza-2-deoxycytidine, DAC) significantly increased expression of miRNA genes with a high frequency of the C[N]6CT motif in DMRs. Statistical analysis showed that the frequency of the C[N]6CT motif in DMRs is highly correlated with intergenic miRNA gene expression, suggesting that C[N]6CT motifs associated with DNA methylation regions play a role as regulatory elements for intergenic miRNA gene expression.
-
dc.description.tableofcontentsABSTRACT ..................................................................................................... i
TABLE OF CONTENTS ............................................................................... iv
LIST OF FIGURES ....................................................................................... viii
LIST OF TABLES ....................................................................................... x
CHAPTER 1. LITERATURE REVIEW ....................................... 1
1. BIOINFORMATICAL APPROACHES FOR EXPRESSION DATA 2
1.1. DNA microarray technology ..................................................................... 2
1.2. Applications of microarray ........................................................................ 5
1.3. Microarray data analysis ........................................................................... 6
1.3.1. Standardization of microarray data ................................................. 6
1.3.2. Pre-processing of microarray data .................................................. 8
1.3.3. Normalization ................................................................................. 8
1.3.4. Statistical methods ........................................................................... 11
1.4. Cluster analysis ........................................................................................ 15
1.4.1. Hierarchical cluster ......................................................................... 15
1.4.2. Non-hierarchical cluster .................................................................. 16
1.4.2.1. k-means clustering ............................................................. 18
1.4.2.2. Self-organizing maps (SOM) clustering ............................ 18
1.5. Gene Ontology (GO) analysis .................................................................. 21
1.5.1. Foundation of GO ........................................................................... 21
1.5.2. Three categories of GO .................................................................... 21
1.5.3. Application of GO for functional genomics .................................... 24
2. SELENIUM BIOLOGY .......................................................................... 26
2.1. Selenium and human health ..................................................................... 26
2.2. Selenium metabolism ............................................................................... 29
2.3. Selenoproteins biosynthesis ..................................................................... 29
2.3.1. Mechanism of selenocysteine biosynthesis .................................... 33
2.3.2. Incorporation of selenocysteine into protein .................................. 35
2.3.3. Components of selenocysteine biosynthesis .................................. 37
2.4. Selenophosphate synthetase (SPS) ........................................................... 39
2.4.1. Structural characteristic of eukaryotic SPS .................................... 40
2.4.2. Functional characteristic of eukaryotic SPS .................................... 42
3. VITAMIN B6 ............................................................................................... 45
3.1. Physiological roles of vitamin B6 ............................................................. 45
3.2. Vitamin B6 biosynthesis ............................................................................ 47
4. MICRORNA ............................................................................................... 51
4.1. Biogenesis of microRNA ........................................................................ 51
4.2. Functions and regulation of microRNA ................................................... 54
4.2.1. MicroRNA-mediated gene regulation ............................................ 54
4.2.2. Epigenetic regulation of microRNA ............................................... 55
4.3. Promoters and microRNA ........................................................................ 56
4.3.1. MicroRNA transcription .................................................................. 56
4.3.2. Promoter regions ............................................................................. 56
4.3.3. Transcription factors ........................................................................ 59
5. EPIGENETICS ........................................................................................... 62
5.1. DNA methylation ..................................................................................... 62
5.2. Histone modification ................................................................................ 64
CHAPTER 2. DROSOHPILA SELENOPHOSPHATE SYNTHETASE 1 REGULATES VITAMIN B6 METABOLISM: PREDICTION AND CONFIRMATION ...................................... 68
1. INTRODUCTION ...................................................................................... 69
2. MATERIALS AND METHODS ............................................................. 73
2.1. Regents and other material ....................................................................... 73
2.2. SL2 cell culture and RNA interference ..................................................... 73
2.3. Microarray experiment ............................................................................. 73
2.4. Microarray data processing ...................................................................... 75
2.5. Temporal clustering .................................................................................. 77
2.6. Gene ontology analysis ............................................................................ 78
2.7. RT-PCR and quantitative real time RT-PCR ........................................... 78
2.8. Measurement of intracellular PLP concentration .................................... 79
2.9. Mitochondrial staining and confocal microscopy .................................... 80
3. RESULTS ..................................................................................................... 81
3.1. Identification of differentially expressed genes ....................................... 81
3.2. Functional distribution of differentially expressed genes ....................... 90
3.3. Construction the gene sets by temporal clustering ................................... 92
3.3.1. Clustering DEGs by SOM algorithm ............................................ 92
3.3.2. Functional distribution of six clusters ............................................ 92
3.3.3. Construction of three gene sets for GO analysis ............................. 95
3.4. Identification of statistically overrepresented biological processes ......... 96
3.5. Validation of expression by quantitative PCR ......................................... 100
3.6. Intracellular pyridoxal phosphate level was decreased by SPS1 knockdown 104
3.7. Inhibition of PLP biosynthesis and SPS1 knockdown showed similar expression patterns ................................................................................... 107
3.8. The reduction of intracellular PLP level inhibits cell growth and induces megamitochondrial formation .................................................................. 109
4. DISCUSSION .............................................................................................. 112
CHAPTER 3. IDENTIFICATION OF METHYLATION-DEPENDENT REGULATORY ELEMENTS FOR INTERGENIC MICRORNAS IN HUMAN H4 CELL ....... 118
1. INTRODUCTION ...................................................................................... 119
2. MATERIALS AND METHODS ............................................................. 122
2.1. Cell lines and culture ............................................................................... 122
2.2. Identification of miRNAs from sequence and annotation data ............... 122
2.3. Probe design ............................................................................................. 122
2.4. Microarray experiment ............................................................................ 124
2.5. Microarray data analysis .......................................................................... 124
2.6. Distribution analysis ................................................................................ 126
2.6.1. Predicted transcription factor binding sites (TFBSs) ...................... 126
2.6.2. Predicted transcription start sites (TSSs) ........................................ 127
2.6.3. Differentially methylated regions (DMRs) ..................................... 127
2.7. Motif analysis .......................................................................................... 127
2.7.1. Multiple alignments of DMRs and clustering ................................. 127
2.7.2. Identification of statistically significant motifs .............................. 128
2.8. Reverse transcription PCR reaction ......................................................... 128
2.9. Quantitative real-time PCR ...................................................................... 129
2.10. miRNA targets prediction ...................................................................... 129
2.11. Gene ontology analysis .......................................................................... 129
2.12. Analysis of bisulfite sequencing data ................................................... 130
3. RESULTS ..................................................................................................... 131
3.1. Identification of DMRs ............................................................................ 131
3.2. Distribution of DMRs, TFBSs and TSSs ................................................. 131
3.3. Clustering DMRs using phylogenetic method ......................................... 141
3.4. Prediction of sequence motifs from DMPs .............................................. 141
3.5. Effect of demethylation on intergenic miRNA expression ...................... 149
3.6. Correlations between the C[N]6CT motif in DMRs and intergenic miRNA expression ............................................................................................... 152
4. DISCUSSION .............................................................................................. 154
CHAPTER 4. CONCLUSIONS AND FUTHER REMARKS 157
1. CONCLUSTIONS .................................................................................... 158
2. FUTHER REMARKS .............................................................................. 159
REFERENCES ................................................................................................ 160
ABSTRACT IN KOREAN ............................................................................ 181
-
dc.formatapplication/pdf-
dc.format.extent8932175 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectselenophosphate synthetase 1-
dc.subjectvitamin B6-
dc.subjectmicroRNA-
dc.subjectpromoter-
dc.subject.ddc574-
dc.titleStudies on prediction of SPS1 gene function and microRNA transcriptional regulatory element by bioinformatical analysis-
dc.typeThesis-
dc.description.degreeDoctor-
dc.citation.pagesx, 184-
dc.contributor.affiliation자연과학대학 협동과정 생물정보학전공-
dc.date.awarded2012-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share