Publications

Detailed Information

Hypergraph Models for Identifying Co-Regulatory Genomic Interactions : 동시조절 유전적 상호작용 발굴을 위한 하이퍼그래프 모델

DC Field Value Language
dc.contributor.advisor장병탁-
dc.contributor.author김수진-
dc.date.accessioned2017-07-14T06:01:45Z-
dc.date.available2017-07-14T06:01:45Z-
dc.date.issued2014-02-
dc.identifier.other000000017665-
dc.identifier.urihttps://hdl.handle.net/10371/125375-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 협동과정 생물정보학전공, 2014. 2. 장병탁.-
dc.description.abstractA comprehensive understanding of biological systems requires the analysis of higher-order interactions among many genomic factors. Various genomic factors cooperate to affect biological processes including cancer occurrence, progression and metastasis. However, the complexity of genomic interactions presents a major barrier to identifying their co-regulatory roles and functional effects. Thus, this dissertation addresses the problem of analyzing complex relationships among many genomic factors in biological processes including cancers. We propose a hypergraph approach for modeling, learning and extracting: explicitly modeling higher-order genomic interactions, efficiently learning based on evolutionary methods, and effectively extracting biological knowledge from the model.
A hypergraph model is a higher-order graphical model explicitly representing complex relationships among many variables from high-dimensional data. This property allows the proposed model to be suitable for the analysis of biological and medical phenomena characterizing higher-order interactions between various genomic factors. This dissertation proposes the advanced hypergraph-based models in terms of the learning methods and the model structures to analyze large-scale biological data focusing on identifying co-regulatory genomic interactions on a genome-wide level. We introduce an evolutionary approach based on information-theoretic criteria into the learning mechanisms for efficiently searching a huge problem space reflecting higher-order interactions between factors. This evolutionary learning is explained from the perspective of a sequential Bayesian sampling framework. Also, a hierarchy is introduced into the hypergraph model for modeling hierarchical genomic relationships. This hierarchical structure allows the hypergraph model to explicitly represent gene regulatory circuits as functional blocks or groups across the level of epigenetic, transcriptional, and post-transcriptional regulation. Moreover, the proposed graph-analyzing method is able to grasp the global structures of biological systems such as genomic modules and regulatory networks by analyzing the learned model structures.
The proposed model is applied to analyzing cancer genomics considered as a major topic in current biology and medicine. We show that the performance of our model competes with or outperforms state-of-the-art models on multiple cancer genomic data. Furthermore, the propose model is capable of discovering new or hidden patterns as candidates of potential gene regulatory circuits such as gene modules, miRNA-mRNA networks, and multiple genomic interactions, associated with the specific cancer. The results of these analysis can provide several crucial evidences that can pave the way for identifying unknown functions in the cancer system. The proposed hypergraph model will contribute to elucidating core regulatory mechanisms and to comprehensive understanding of biological processes including cancers.
-
dc.description.tableofcontentsAbstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i
1 Introduction
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problems to be Addressed . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The Proposed Approach and its Contribution . . . . . . . . . . . . . . 4
1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work
2.1 Analysis of Co-Regulatory Genomic Interactions from Omics Data . . 9
2.2 Probabilistic Graphical Models for Biological Problems . . . . . . . . 11
2.2.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Higher-order Graphical Models for Biological Problems . . . . . . . . 16
2.3.1 Higher-Order Models . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Hypergraph Classifiers for Identifying Prognostic Modules in Cancer
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Analyzing Gene Modules for Cancer Prognosis Prediction . . . . . . 24
3.3 Hypergraph Classifiers for Identifying Cancer Gene Modules . . . . 26
3.3.1 Hypergraph Classifiers . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Bayesian Evolutionary Algorithm . . . . . . . . . . . . . . . . 27
3.3.3 Bayesian Evolutionary Learning for Hypergraph Classifiers . 29
3.4 Predicting Cancer Clinical Outcomes Based on Gene Modules . . . . 34
3.4.1 Data and Experimental Settings . . . . . . . . . . . . . . . . . 34
3.4.2 Prediction Performance . . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.4 Identification of Prognostic Gene Modules . . . . . . . . . . . 44
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4 Hypergraph-based Models for Constructing Higher-Order miRNA-mRNA
Interaction Networks in Cancer
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Analyzing Relationships between miRNAs and mRNAs from Heterogeneous
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Hypergraph-based Models for Identifying miRNA-mRNA Interactions 57
4.3.1 Hypergraph-based Models . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Learning Hypergraph-based Models . . . . . . . . . . . . . . . 61
4.3.3 Building Interaction Networks from Hypergraphs . . . . . . . 64
4.4 Constructing miRNA-mRNA Interaction Networks Based on Higher-
Order Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.1 Data and Experimental Settings . . . . . . . . . . . . . . . . . 66
4.4.2 Classification Performance . . . . . . . . . . . . . . . . . . . . 68
4.4.3 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 70
CONTENTS iii
4.4.4 Constructed Higher-Order miRNA-mRNA Interaction Networks
in Prostate Cancer . . . . . . . . . . . . . . . . . . . . . 74
4.4.5 Functional Analysis of the Constructed Interaction Networks 78
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5 Hierarchical Hypergraphs for Identifying Higher-Order Genomic Interactions
in Multilevel Regulation
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Analyzing Epigenetic and Genetic Interactions from Multiple Genomic
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Hierarchical Hypergraphs for Identifying Epigenetic and Genetic Interactions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.1 Hierarchical Hypergraphs . . . . . . . . . . . . . . . . . . . . . 92
5.3.2 Learning Hierarchical Hypergraphs . . . . . . . . . . . . . . . 95
5.4 Identifying Higher-Order Genomic Interactions in Multilevel Regulation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.1 Data and Experimental Settings . . . . . . . . . . . . . . . . . 100
5.4.2 Identified Higher-Order miRNA-mRNA Interactions Induced
by DNA Methylation in Ovarian Cancer . . . . . . . . . . . . 102
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6 Concluding Remarks
6.1 Summary of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Directions for Further Research . . . . . . . . . . . . . . . . . . . . . . 109
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
초록 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
-
dc.formatapplication/pdf-
dc.format.extent15312697 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectHypergraph-
dc.subjectHigher-order graphical model-
dc.subjectEvolutionary learning-
dc.subjectGenomic interaction-
dc.subjectGene module-
dc.subjectmiRNA-mRNA network-
dc.subjectCancer-
dc.subject.ddc574-
dc.titleHypergraph Models for Identifying Co-Regulatory Genomic Interactions-
dc.title.alternative동시조절 유전적 상호작용 발굴을 위한 하이퍼그래프 모델-
dc.typeThesis-
dc.description.degreeDoctor-
dc.citation.pages133-
dc.contributor.affiliation자연과학대학 협동과정 생물정보학전공-
dc.date.awarded2014-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share