Browse

Fluoride and Bacteriophage Removal from Aqueous Solution Using Pyrophyllite as Adsorbents
납석을 흡착제로 이용한 수용액상의 불소와 박테리오파지 제거

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
김재현
Advisor
김성배
Major
농업생명과학대학 생태조경.지역시스템공학부(지역시스템공학전공)
Issue Date
2013-02
Publisher
서울대학교 대학원
Description
학위논문 (석사)-- 서울대학교 대학원 : 생태조경.지역시스템공학부(지역시스템공학전공), 2013. 2. 김성배.
Abstract
본 연구의 목적은 납석을 흡착제로서 이용하여 수용액상의 불소와 박테리오파지를 제거하는 것이다. 실험에 사용된 납석은 흰색을 띠며 거칠고 불규칙적인 형태의 표면을 갖는다. X선 형광분석 결과 납석의 주요 성분은 Si (74.03%) 와 Al (21.20%) 이었으며 X선 분말 회절 분석에 의하여 석영 (SiO2), 딕카이트 (Al2Si2O5(OH)4), 납석 (Al2Si2O5(OH)4)으로 구성되어 있음을 확인하였다. FTIR 분광 분석을 통해 수산화기의 존재를 확인하였으며 질소가스 흡탈착법을 이용하여 분석한 결과 납석의 비표면적은 1.3419 m2/g, 공극의 총 부피는 5.74×10-4 cm3/g 이었으며 공극의 평균 크기는 1.7122 nm 였다.
평형 배치 실험 결과 납석의 불소 최대 흡착량은 0.737 mg/g 이었으며 동역학적 배치 실험 결과 24시간 이내에 평형에 도달하였다. 25-45℃ 범위에서 열역학적 실험을 수행한 결과 납석의 불소 흡착 과정은 흡열반응을 나타내었으며, pH 4.0-9.0 범위에서는 pH의 영향을 거의 받지 않았다. 경쟁음이온의 영향을 살펴본 결과 SO42-, HPO42-, CO32-는 납석의 불소 흡착을 방해하였으나 NO3-와 Cl-는 거의 영향을 끼치지 않았다. 또한 다양한 온도(미처리, 400, 600, 800, 1000, 1100℃)에서 납석을 열처리한 결과 400℃로 열처리할 경우 열처리하지 않은 납석에 비하여 21% 향상된 불소 흡착량을 나타내었다.
MS2를 이용하여 배치실험을 수행한 결과 MS2 초기농도가 2.85×106 pfu/mL일 때 30mL의 용액에 대하여 주입된 납석의 양이 0.01g에서 2.0g으로 증가함에 따라 MS2의 제거율이 5.26%에서 99.99%로 증가하였으며 최대 흡착량은 5.01×108 pfu/g 이었다. 동역학적 배치실험 결과 납석에 의한 MS2 제거는 빠르게 이루어지며, 30분 이내에 3.7 log removal, 180분 이내에는 4 log removal 이상의 제거율을 나타내었다. 납석의 MS2 제거에 미치는 불소 이온의 영향을 알아보기 위하여 배치실험을 수행한 결과 불소의 농도가 5 mg/L일 때와 10 mg/L일 때 MS2의 제거율은 각각 3.05 log removal, 2.54 log removal 로서 불소 이온이 존재하지 않는 경우(4.0 log removal)에 비하여 감소하였다. 이러한 제거율의 차이는 납석 표면의 흡착사이트 경쟁에 의해 불소이온이 MS2의 흡착을 방해하였기 때문인 것으로 생각된다. 유량 0.5 mL/min, 초기 MS2 농도 5.98×105 pfu/mL의 조건에서 칼럼 실험을 수행한 결과 5 mg/L의 불소 이온이 동시에 존재하는 경우 MS2 흡착량은 4.70×106 pfu/g으로 불소 이온이 존재하지 않는 경우(8.17×106 pfu/g)에 비하여 감소하였으며 칼럼실험에서의 MS2 흡착량의 감소는 배치실험의 결과에 비해 적게 나타났다. 본 연구결과를 통하여 수중의 불소와 바이러스를 제거하는 흡착제로서 납석의 적용 가능성을 확인할 수 있었다.
The objective of this study is to investigate the removal of fluoride and bacteriophage from aqueous solution using pyrophyllite as adsorbents. Pyrophyllite particles used in the experiments are white with rough and heterogeneous surfaces. The chemical composition from X-ray fluorescence (XRF) analysis showed that the major constituents of pyrophyllite were Si (74.03%) and Al (21.20%). The X-ray diffraction (XRD) pattern indicated peaks for quartz (SiO2), dickite (Al2Si2O5(OH)4), and pyrophyllite (Al2Si4O10(OH)2). In the Fourier transform infrared (FTIR) spectra, a band recorded at 3652 (1/cm) corresponded to O-H stretching vibrations for OH groups bonded to Al ions. A band at 938 (1/cm) was attributed to OH bending vibrations for Al-OH groups. N2 adsorption-desorption analysis indicated that BET surface area of pyrophyllite was 1.3419 m2/g with total pore volume of 5.74  10-4 cm3/g and average pore diameter of 1.7122 nm.
Equilibrium test (adsorbent particle size < 0.15 mm) demonstrated that the maximum sorption capacity of pyrophyllite was 0.737 mg/g. Kinetic test showed that fluoride sorption to pyrophyllite arrived at equilibrium around 24 h. Thermodynamic test indicated that fluoride sorption to pyrophyllite increased with increasing temperature from 25 to 45 oC, indicating the endothermic nature of sorption process. Further experiments indicated that fluoride removal was not sensitive to solution pH between 4.0 and 9.0. The influence of sulfate, carbonate, and phosphate on the removal of fluoride was important while the effect of nitrate and chloride was negligible. In addition, among the pyrophyllite thermally treated at different temperatures (untreated, 400, 600, 800, 1000, 1100 oC), the adsorbent treated at 400 oC had the highest adsorption capacity (21% higher than that of untreated pyrophyllite).
Batch and column experiments were also conducted to examine the MS2 sorption on pyrophyllite. Results demonstrated that pyrophyllite was effective in removing MS2. The percent removal of MS2 increased from 5.26 to 99.99% with increasing pyrophyllite doses from 0.01 to 1.0 g per 30 mL solution (initial MS2 concentration = 2.85 × 106 pfu/mL). The maximum removal capacity of pyrophyllite for MS2 was determined to be 5.01 × 108 pfu/g. The sorption of MS2 to pyrophyllite was a fast process with 3.7 log removal within 30 min and more than 4.0 log removal after 180 min. The influence of fluoride on the removal of MS2 on pyrophyllite was observed under batch conditions. At fluoride concentrations of 5 and 10 mg/L, the log removals of MS2 on pyrophyllite were 3.05 and 2.54, respectively, which were lower than that with no fluoride present (4.0 log removal). Results suggested that the removal of MS2 on pyrophyllite was influenced by fluoride ions because fluoride ions could compete with MS2 for sorption sites on the pyrophyllite surface. Column results showed that pyrophyllite was effective in removing MS2 under flow-through conditions (flow rate = 0.5 mL/min
initial MS2 concentration = 5.98  105 pfu/mL), with a removal capacity of 8.17 × 106 pfu/g with no fluoride present and 4.70 × 106 pfu/g with 5 mg/L fluoride present. The effect of fluoride on MS2 removal in column experiments was not as substantial as the effects in the batch experiments under the given conditions. This study demonstrates that pyrophyllite clay could be used as an adsorbent for the removal of fluoride and viruses from water.
Language
English
URI
https://hdl.handle.net/10371/125544
Files in This Item:
Appears in Collections:
College of Agriculture and Life Sciences (농업생명과학대학)Dept. of Landscape Architecture and Rural System Engineering (생태조경·지역시스템공학부)Theses (Master's Degree_생태조경·지역시스템공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse