Publications

Detailed Information

Stability enhancement of black rice anthocyanin using cyclodextrin produced from rice starch : 쌀전분 유래 환형덱스트린을 이용한 흑미 안토시아닌의 안정성 향상

DC Field Value Language
dc.contributor.advisor김용노-
dc.contributor.author주경선-
dc.date.accessioned2017-07-14T06:36:45Z-
dc.date.available2019-04-17-
dc.date.issued2017-02-
dc.identifier.other000000141054-
dc.identifier.urihttps://hdl.handle.net/10371/125766-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 바이오시스템·소재학부, 2017. 2. 김용노.-
dc.description.abstract흑미는 다양한 유용 성분, 특히 대표적인 천연 항산화제로 널리 알려져 있는 안토시아닌 (ACN) 을 포함하는 식품 작물이다. 그러나 ACN은 천연물 중에서 가장 불안정한 화합물에 속하고 그 결정화 또한 곤란하기 때문에 이를 포함한 흑미의 응용범위가 제한되는 문제가 있다. 따라서 본 연구에서는 ACN의 빛과 열에 대한 안정성을 증진시키기 위해 다양한 게스트 분자와 복합체를 형성 할 수 있는 다목적 호스트 분자인 환형덱스트린 (CD)를 이용하여 ACN의 안정성의 향상을 시도하였다. 또한 다양한 쌀 전분에 isoamylase와 Thermoanaerobacter sp. 유래 CGTase, glucoamylase를 처리하여 CD 생산의 최적화를 도모하였다.
도담미 (DD), 일품미 (IP), 새고아미 (SG), 신토흑미 (SH), 건강홍미 (GH) 다섯 가지 종류의 특수미 전분의 물리화학적 특성을 분석하고 CD의 생산 수율을 비교하였다. DD는 66 %의 가장 높은 아밀로스 함량으로 인해 HPAEC, RVA, DSC, XRD, SEM과 같은 다양한 물리화학적 분석 결과에서 다른 종류들과 상당한 차이를 나타내었다. CD생산을 위한 최적 조건을 결정하기 위한 예비실험에서 SG 전분 1%에 isoamylase 5U/g을 8시간, CGTase 25U/g을 6시간, glucoamylase 50U/g을 6시간 처리하였을 때 최대 수율 76.64%를 보였다. 다섯 가지 전분에서 최적 조건으로 CD를 생산하였을 때, DD가 82.91%로 가장 높은 수율을 나타냈으며 이에 따라, DD를 CD 생산의 최종 기질로 선택하였다.
ACN은 추출 후, 동결 건조를 통해 분말화하였으며 CD가 ACN의 안정성에 미치는 영향을 조사하기 위해 0~2%의 β-CD를 0.1% ACN과 pH 2, 4, 6, 8에서 24h동안 혼합한 뒤, 열처리(96℃)와 UVB 조건에서 24h동안 항산화능이 감소되는 정도를 ABTS 방법으로 비교 분석하였다. 열처리 조건에서는 pH 2에서 β-CD를 첨가할수록 ACN의 항산화 안정성이 유지되는 유의적 차이를 나타내었고, UVB 조건에서 역시 pH 2에서 β-CD에 의해 항산화 안정성이 유지되는 경향을 나타냈다. pH와 β-CD 농도 별 항산화능의 degradation constant(kd)값과 반감기를 통해 ACN이 pH2에서 열에 취약한 구조로 존재하고, pH 4에서는 UVB에 취약한 구조로 존재하며 CD가 이 pH에서 ACN을 보호 한다는 것을 유추하였다. 동일한 조건으로 pH2와 4에서 DD로부터 생산된 CD(DD-CD), 말토덱스트린(MD) 각각을 첨가하여 ACN의 항산화 안정성을 비교한 결과, 전반적으로 MD와 기존 β-CD의 첨가보다 DD_CD의 첨가가 항산화 안정성에 미치는 효과가 더 높았는데, 이는 MD보다 CD가 ACN과의 복합체 형성능이 뛰어나고 DD-CD안에 들어 있는 α-, β-, γ- CD가 단일 β-CD에 비해 ACN과의 복합체 형성에 높은 효과가 있다는 점을 시사한다.
결론적으로, 본 연구는 isoamylase와 CGTase를 순차적으로 처리하여 쌀 전분으로부터 고효율 CD를 제조할 수 있음을 확인하였으며, CD가 ACN과 복합체를 형성하여 ACN의 pH 의존성 변색과 열 및 UV불안정성을 완화한다는 것을 확인하여 산업적 활용 가능성을 제시하였다. 그러나 DD-CD 제조시, CGTase의 활성이 당과 CD에 의해 저해되므로 공정 과정 중에 CD를 분리흡착하는 과정이 요구된다. 또한, ACN은 빛이나 열 이외의 환경에서도 불안정한 것으로 알려진 바, ACN의 저장 안정성 및 산화 안정성에서 DD-CD가 미치는 영향을 추가적으로 실시하여 추후 DD-CD가 첨가된 안정한 항산화 소재의 개발과 흑미의 활용성 확대가 가능 할 것으로 사료된다.
-
dc.description.abstractBlack rice is a food crop that contains a variety of useful substances, especially anthocyanins (ACNs) widely known as a representative natural antioxidant. However, application of black rice containing ACN has been limited as ACN belongs to one of the most unstable compounds among natural products, and its crystallization is difficult. Therefore, in this study, the improvement of ACN stability was attempted by using cyclodextrin (CD), a versatile host molecule capable of forming a complex with various guest molecules to improve their thermal and photo- stability. The optimization of CD production from various rice starch was also conducted and treated with isoamylase, CGTase from Thermoanaerobacter sp., and glucoamylase.
The physicochemical properties of five different cultivars of rice starch, Dodammi (DD), Ilpummi (IP), Saegoami (SG), Sintoheukmi (SH), and Geonganghongmi (GH) were investigated and the yields of CD production were compared. Due to the highest amylose content of 66%, DD showed significant differences from the other cultivars in the results of various physicochemical analyses such as HPAEC, RVA, DSC, XRD and SEM. From the preliminary experiments to determine the optimum conditions for CD production using SG starch, the maximum yield of 76.64% was obtained when 5 U/g isoamylase was treated for 8 h, 25 U/g CGTase was treated for 6 h, and 50 U/g glucoamylase was treated for 6h. When CD was produced from the five cultivars at the optimal conditions, DD starch showed the highest yield of 82.91%. Therefore, DD was selected as the final substrate for CD production.
After extraction, ACN was pulverized by lyophilization. To investigate the effect of CD on ACN stability, 0-2% of β-CD was mixed with 0.1% ACN at pH 2, 4, 6, and 8 for 24 h, and a decrease of antioxidant activity during heat treatment (96°C) and UVB irradiation for 24 h was monitored using ABTS method. In the heat treatment condition, the addition of β-CD at pH 2 resulted in a significant improvement in antioxidative stability of ACN. A similar improvement of ACN antioxidative stability with β-CD was observed for UVB irradiation tests at pH 2. The degradation constant (kd) value and half-life (t1/2) of antioxidant activity suggested that ACN existed in a structure susceptible to heat at pH 2 and vulnerable to UVB at pH 4, and CD worked to protect ACN at these pHs. As a result of comparing the antioxidative stability of ACN with the addition of CD produced from DD (DD-CD) and maltodextrin (MD) at pH 2 and 4 under the same conditions, the addition of DD-CD was superior to the addition of MD and β-CD. This result indicated that CD was superior to MD in complex formation with ACN, and α-, β-, and γ-CD contained in DD-CD were more effective to protect ACN than β-CD only.
In conclusion, this study confirmed that highly efficient CDs could be produced from rice starch by sequential treatment of isoamylase, CGTase, and glucoamylase. Also, CD was found to form a complex with ACN to alleviate pH-dependent thermal and photo- instability of ACN and suggested the possibility of industrial application. However, in the production of DD-CD, the activity of CGTase was inhibited by sugar and CD. Therefore, a process of separating and adsorbing CD was required during the process. In addition, since ACN is known to be unstable in environments other than light or heat, further studies about the effect of DD-CD on the storage stability and oxidative stability of ACN will be needed. It is highly feasible that DD-CD contained stable antioxidant materials can be developed and also, the utilization of black rice can be expanded in the future.
-
dc.description.tableofcontentsⅠ. Introduction 1
Ⅱ. Background and literature review 4
Ⅲ. Materials and methods 15
3.1. Materials 15
3.2. Cyclodextrin (CD) production from various rice cultivars 16
3.2.1. Isolation of starches from various rice cultivars 16
3.2.2. Physicochemical properties of rice starches 17
3.2.2.1. Moisture content and apparent amylose content 17
3.2.2.2. Rapid Visco-Analyzer (RVA) 17
3.2.2.3. High-performance size exclusion chromatography (HPSEC) 18
3.2.2.4. High-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) 19
3.2.2.5. X-ray diffractometry (XRD) 21
3.2.2.6. Differential scanning calorimeter (DSC) 21
3.2.2.7. Scanning electron microscopy (SEM) 22
3.2.3. CD production from various rice cultivars 22
3.2.3.1. Assay of CGTase activity 22
3.2.3.2. Debranching of rice starch using Pseudomonas isoamylase 23
3.2.3.3. Reducing sugar measurement 23
3.2.3.4. Optimization of CGTase and glucoamylase treatment 24
3.2.3.5. Quantification of CDs by HPAEC-PAD 25
3.2.3.6. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) 26
3.3. Interaction between anthocyanin and CD produced from high amylose rice starch 27
3.3.1. Extraction of ACN from black rice 27
3.3.2. ABTS Antioxidant activity assay 27
3.3.3. Interaction of ACN with CD 29
3.3.3.1. Production of CD 29
3.3.3.2. Fading effect of ACN with CD 30
3.3.4. Analysis of stability of ACN with CD 30
3.3.4.1. Thermal stability 30
3.3.4.2. Photo-stability 31
3.3.4.3. Degradation rate constant (kd) and half-life (t1/2) 31
3.3.5. Statistical analysis 32
Ⅳ. Results and discussions 33
4.1. CD production from various rice cultivars 33
4.1.1. Physicochemical properties of rice starches 33
4.1.1.1. Moisture content and apparent amylose content 33
4.1.1.2. Pasting properties by RVA 34
4.1.1.3. Molecular weight distribution curve by HPSEC 36
4.1.1.4. Distribution of branched amylopectin chain length by HPAEC-PAD 37
4.1.1.5. Crystallinity of granules by XRD 40
4.1.1.6. Thermal properties by DSC 42
4.1.1.7. Granule morphology by SEM 44
4.1.2. CD production from various rice cultivars 45
4.1.2.1. Reducing sugars formed from rice starch after debranching 45
4.1.2.2. Optimization of CGTase and glucoamylase 47
4.1.2.3. Comparison of CD yield from various rice cultivars 54
4.1.2.4. Identification of CD products by MALDI-TOF MS 56
4.2. Interaction between anthocyanin and CD produced from high amylose rice starch 58
4.2.1. Extraction of ACN from black rice 58
4.2.2. Interaction of ACN with CD 60
4.2.2.1. Production of CD 60
4.2.2.2. Fading effect of ACN with CD 64
4.2.3. Analysis of stability of ACN with CD 67
4.2.3.1. Antioxidant activity as various concentration of ACN with CD 67
4.2.3.2. Antioxidant activity as various pH level of ACN with CD 69
4.2.3.3. Thermal stability 71
4.2.3.4. Photo stability 76
4.2.3.5. Photo-stability of CAN with produced CD and MD 80
Ⅵ. Summary and conclusions 86
References 88
국문초록 98
-
dc.formatapplication/pdf-
dc.format.extent3779188 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectBlack rice-
dc.subjectanthocyanin-
dc.subjectcyclodextrin-
dc.subjectisoamylase-
dc.subjectcyclodextrin glucanotransferase-
dc.subjectglucoamylase-
dc.subjectthermal stability-
dc.subjectphoto-stability-
dc.subject.ddc660-
dc.titleStability enhancement of black rice anthocyanin using cyclodextrin produced from rice starch-
dc.title.alternative쌀전분 유래 환형덱스트린을 이용한 흑미 안토시아닌의 안정성 향상-
dc.typeThesis-
dc.contributor.AlternativeAuthorJoo, Kyeong Seon-
dc.description.degreeMaster-
dc.citation.pages100-
dc.contributor.affiliation농업생명과학대학 바이오시스템·소재학부-
dc.date.awarded2017-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share