Publications

Detailed Information

Discontinuous percolation transitions in cluster merging processes : 클러스터 결합 과정에서의 불연속 여과 상전이

DC Field Value Language
dc.contributor.advisor강병남-
dc.contributor.author조영설-
dc.date.accessioned2017-07-19T06:07:02Z-
dc.date.available2017-07-19T06:07:02Z-
dc.date.issued2015-02-
dc.identifier.other000000025294-
dc.identifier.urihttp://dcollection.snu.ac.kr:80/jsp/common/DcLoOrgPer.jsp?sItemId=000000025294-
dc.description학위논문(박사)--서울대학교 대학원 :자연과학대학 물리·천문학부,2015. 2. 강병남.-
dc.description.abstractThe notion of percolation transition is widely applied in a variety of disciplines;
it explains the formation of a spanning cluster connecting two opposite sides of
a system in Euclidean space, such as occurs in metal-insulator or sol-gel transitions.
Alternatively, percolation can also be interpreted as the formation of a
macroscopic cluster in the system. One of the models of this category is the Erd˝os-
R´enyi model. In this model, starting with N isolated nodes, an edge is connected
between a randomly selected unconnected pair of nodes at each time step. Then,
a macroscopic cluster is generated continuously at the percolation threshold. Recently,
the Erd˝os-R´enyi model was modified by imposing additionally a so-called
product rule, which suppresses the formation of a large cluster. Because of this
suppressive bias, the percolation threshold is delayed; thus, when the giant cluster
eventually emerges, it does so explosively. Hence, this kind of model is called the
explosive percolation model. We studied the explosive percolation models in various
aspects and found that many unusual behaviors revealed in this model. Initially,
this explosive percolation model was regarded as a model showing a discontinuous
transition; however, it was recently found that the transition is continuous in the
thermodynamic limit. In these circumstances, it is needed to set up a theoretical
basis to understand the discontinuous percolation transition. For this, we classify
the discontinuous percolation transition into Type-I and Type-II and provide a necessary
condition for each type. These necessary conditions successfully explain
the origin of the discontinuous percolation transitions in unified framework. Finally,
we suggest a diffusion-limited cluster aggregation model as one example for
physical model showing discontinuous transition and calculate conductivity in a
discontinuous percolation transition model.
-
dc.description.tableofcontentsAbstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Discontinuous percolation transitions in
non-cluster merging processes . . . . . . . . . . . . . . . . . . . 3
1.2.1 Bootstrap (k-core) percolation . . . . . . . . . . . . . . . 3
1.2.2 Percolation transition of the mutually connected clusters . 5
1.3 Explosive percolation model: First trial to find discontinuous percolation
transition in cluster merging processes . . . . . . . . . . 5
2. Explosive percolation model . . . . . . . . . . . . . . . . . . . . . 9
2.1 Explosive percolation model on scale-free networks . . . . . . . . 9
2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Model description . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Finite-size scaling for discontinuous percolation transition . . . . 18
iii
2.2.1 Finite-size scaling ansatz for discontinuous percolation transition
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Physical meaning of the onset of the discontinuous percolation
transition . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Continuity and discontinuity in the explosive percolation models . 24
2.4 Suppression effect on the explosive percolation models . . . . . . 24
2.4.1 Suppression principle failure . . . . . . . . . . . . . . . . 25
2.4.2 Modified detailed rules . . . . . . . . . . . . . . . . . . . 28
2.4.3 Application of the modified detailed rules to explosive percolation
models . . . . . . . . . . . . . . . . . . . . . . . 29
3. Type-I discontinuous percolation transition . . . . . . . . . . . . . 35
3.1 Definition and necessary condition for type-I discontinuous percolation
transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Cluster aggregation network model . . . . . . . . . . . . . . . . . 37
3.2.1 Description of the model . . . . . . . . . . . . . . . . . . 38
3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Testing the necessary condition for type-I discontinuous
percolation transition . . . . . . . . . . . . . . . . . . . . 43
3.3 Avoiding a spanning cluster model . . . . . . . . . . . . . . . . . 44
3.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Description of the model . . . . . . . . . . . . . . . . . . 46
3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Relation between compactness of clusters at the onset of the transtion
and type-I discontinuous percolation transition . . . . . . . . . . . 52
3.5 Other models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
iv
3.5.1 Product rule with m > lnN . . . . . . . . . . . . . . . . . 59
3.5.2 Gaussian model . . . . . . . . . . . . . . . . . . . . . . . 60
4. Type-II discontinuous percolation transition . . . . . . . . . . . . 63
4.1 General properties of type-II discontinuous percolation transitions 64
4.1.1 Definition and necessary condition for type-II discontinuous
percolation transition . . . . . . . . . . . . . . . . . . 64
4.1.2 Symmetry breaking dynamics . . . . . . . . . . . . . . . 65
4.2 Two-species cluster aggregation model . . . . . . . . . . . . . . . 67
4.2.1 Description of the model . . . . . . . . . . . . . . . . . . 67
4.2.2 Testing the necessary condition for type-II discontinuous
percolation transition . . . . . . . . . . . . . . . . . . . . 70
4.2.3 Testing the symmetry breaking dynamics . . . . . . . . . 71
4.3 Other models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 BFW model . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Half-restricted model . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Ordinary percolation in a hierarchical network . . . . . . 74
5. Discontinuous percolation transitions in real physical systems . . . 79
5.1 Diffusion-limited cluster aggregation model . . . . . . . . . . . . 79
5.2 Diffusion-limited cluster aggregation model from the perspective
of percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Discontinuous percolation transitions in two, three and four dimensions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Analysis via an asymmetric Smoluchowski equation . . . . . . . . 84
5.5 Experiment for the diffusion-limited cluster aggregation model . . 88
v
6. Conductivity in a discontinuous percolation transition model . . . 89
6.1 Conductivity in an ordinary percolation . . . . . . . . . . . . . . 89
6.2 Effective medium theory . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Theoretical formula for the conductivity in the avoiding a spanning
cluster model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Prediction of the behavior of conductivity as the system size increases
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Appendix A. Erd˝os-R´enyi cluster aggregation with arbitrary initial
conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.1 Derivation of G(t) . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.2 Power-law initial conditions . . . . . . . . . . . . . . . . . . . . 103
A.3 Analysis of the product rule . . . . . . . . . . . . . . . . . . . . . 104
Appendix B. Derivation of percolation transitions for the avoiding a
spanning cluster model . . . . . . . . . . . . . . . . . . . . . . . . 109
B.1 Analytic solution for percolation threshold . . . . . . . . . . . . . 109
B.1.1 For spatial dimensions d < dc = 6 . . . . . . . . . . . . . 109
B.1.2 For spatial dimensions d ≥ dc = 6 . . . . . . . . . . . . . 111
B.2 Analytic solution for statistical fluctuation of percolation threshold 113
Appendix C. Analytic solution for the solvable two-species cluster aggregation
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
vi
Abstract in Korean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
-
dc.format.extent128-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectPercolation transition, Spanning cluster, Explosive percolation model, Continuous percolation transition, Discontinuous percolation transition, Achlioptas process, Scale-free network, Finite size scaling theory, Cluster aggregation model, Suppression effect, Diffusion-limited cluster aggregation model, Electric resistivity and conductivity, Cluster merging process-
dc.subject.ddc523-
dc.titleDiscontinuous percolation transitions in cluster merging processes-
dc.title.alternative클러스터 결합 과정에서의 불연속 여과 상전이-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorYoung Sul Cho-
dc.contributor.department자연과학대학 물리·천문학부-
dc.description.degreeDoctor-
dc.date.awarded2015-02-
dc.identifier.holdings000000000021▲000000000023▲000000025294▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share