Browse

Simple Compound Risk Model with Dependant Structure
의존구조를 가진 단순복합위험모형

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
Himchan Jeong
Advisor
Myunghee Cho Paik
Major
자연과학대학 통계학과
Issue Date
2016-08
Publisher
서울대학교 대학원
Keywords
BMSRandom Effects ModelSeverityPredictionDependenceCompound Risk Model in Motor InsuranceGLMM
Description
학위논문 (석사)-- 서울대학교 대학원 : 통계학과, 2016. 8. Myunghee Cho Paik.
Abstract
There have been fewer trials to address the claim severity in the development of optimal bonus-malus system (BMS), while the claim frequency has been dealt with a lot. In this article, the generalized linear mixed model (GLMM) was incorporated to address the severity, frequency, and their dependency simultaneously with 5 years insurance panel data. Also, estimated individual random effect coefficient from training set and past claim was utilized as a predictor of future loss. From the result of analysis, it was revealed that GLMM had the better fit than its alternatives including simple generalized linear model, dependency between the frequency and severity was significant, and estimated random effect coefficient predicted the future loss better as the length of training set increased. These results provide the rationale to reflect both the past frequency and past severity to construct the optimal BMS, and considering dependence between frequency and severity in the derivation of motor insurance premium.
Language
English
URI
https://hdl.handle.net/10371/131314
Files in This Item:
Appears in Collections:
College of Natural Sciences (자연과학대학)Dept. of Statistics (통계학과)Theses (Master's Degree_통계학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse