## Browse

Comparison of Ridge Penalized Logistic Model and Ridge Penalized Simple Linear Model in Dichotomous Response
이분류에서의 리지 벌점화 로지스틱 모형과 리지 벌점화 일반 선형 회귀 모형의 비교

DC Field Value Language
dc.contributor.author조성현-
dc.date.accessioned2017-07-19T08:48:12Z-
dc.date.available2017-07-19T08:48:12Z-
dc.date.issued2017-02-
dc.identifier.other000000141539-
dc.identifier.urihttps://hdl.handle.net/10371/131336-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 통계학과, 2017. 2. 김용대.-
dc.description.abstractNotwithstanding the situation where the value of response is a continuous, there are many other situations where the value of response is a discrete or categorical value, representing that a subject belongs to.

In this regard, logistic regression is one of the most widely used model for classication problem. Generally people believe that the linear regression analysis is not appropriate when we want to build a model to predict what category a new subject should belong to. Nonetheless, simple linear regression can also model dichotomous predictors using linear probability models.

Both models have its own pros and cons. It is important to choose appropriate model depends on the situation. Therefore, in this paper, we investigate that two methods, especially ridge penalized logistic regression and ridge penalized linear regression models, can produce similar results with the same data set in case of dichotomous classication problem. The comparison between the methods is based on the area under the ROC curve value. The goal of this paper is not to discourage the current practice but rather to present an idea that there's no huge difference between two methods.
-
dc.description.tableofcontents1 Introduction 1
2 Methodology 4
2.1. Linear Regression with Ridge penalization for Binary data 4
2.2. Logistic Regression with Ridge penalization for Binary data 6
2.3. Model Comparison Criteria 7
2.4. GCV 8
3 Data Analysis 9
3.1. Data description 9
3.2. Simulation 15
3.3. Result 18
4 Conclusion 27
References 29
-
dc.formatapplication/pdf-
dc.format.extent705056 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectLogistic regression-
dc.subject.ddc519-
dc.titleComparison of Ridge Penalized Logistic Model and Ridge Penalized Simple Linear Model in Dichotomous Response-
dc.title.alternative이분류에서의 리지 벌점화 로지스틱 모형과 리지 벌점화 일반 선형 회귀 모형의 비교-
dc.typeThesis-
dc.description.degreeMaster-
dc.citation.pages30-
dc.contributor.affiliation자연과학대학 통계학과-
dc.date.awarded2017-02-
Appears in Collections:
College of Natural Sciences (자연과학대학)Dept. of Statistics (통계학과)Theses (Master's Degree_통계학과)
Files in This Item: