Publications

Detailed Information

Improved Hessian-Free optimization for acoustic full waveform inversion : 음향파 파형역산을 위한 개선된 헤시안-프리 최적화 기법

DC Field Value Language
dc.contributor.advisor민동주-
dc.contributor.author김신웅-
dc.date.accessioned2017-10-27T16:37:07Z-
dc.date.available2017-10-27T16:37:07Z-
dc.date.issued2017-08-
dc.identifier.other000000146060-
dc.identifier.urihttps://hdl.handle.net/10371/136749-
dc.description학위논문 (박사)-- 서울대학교 대학원 공과대학 에너지시스템공학부, 2017. 8. 민동주.-
dc.description.abstractSeismic full waveform inversion (FWI) is a method to reconstruct material properties of subsurface structures by minimizing the objective function based on residuals between modeled and observed seismic data. For seismic inverse problem, various kinds of optimization methods have been introduced. The truncated Newton method, also known as the Hessian-free (HF) optimization method, has been chosen to optimize large-scale inverse problems. The HF does not need to explicitly compute, store and invert the Hessian matrix. Instead of the Hessian matrix itself, the product of Hessian matrix and column vector is used for the linear conjugate-gradient loop during FWI process. To calculate the product of the Hessian matrix and column vector, the second-order adjoint (SOA) method or finite difference approximation (FDA) method has been widely used. The FDA is easy and intuitive to use in the linear conjugate-gradient method compared with SOA. The accuracy of FDA is dependent on not only the approximation interval but also the inversion settings, such as the model parameter, initial model, frequencies, etc.
To overcome dependency of HF optimization on the approximation method and inversion setting, an improved method is proposed for a stable HF optimization method. The derivations of the improved method are based on not the FDA method but the limit of a function, which is independent of epsilon value. In other words, the improved HF method stably and accurately approximates the matrix-vector product of the Hessian matrix and column vector without any selection of epsilon value. In addition, computational cost of the improved HF optimization method is much lower than the conventional HF optimization method because additional construction and factorization of modeling operator are not needed during the linear conjugate-gradient method in the improved HF optimization method. To demonstrate the feasibility of the improve HF method, numerical examples for the Marmousi and acoustic Overthrust models are performed. Numerical examples indicate that the improved HF method shows better computational efficiency and stability than the conventional HF method without any degradation of inversion results.
-
dc.description.tableofcontentsTable of Contents

Chapter 1. Introduction 1

1.1. Motivation 1
1.2. Research objectives 4
1.3. Outline 5


Chapter 2. Review of forward and inverse theory 6

2.1. Forward modeling 6
2.2. Steepest-descent method for seismic FWI 8
2.2.1 Inversion theory based on the steepest-descent method 9
2.2.2 Preconditioner 11
2.2.3 Simultaneous source method 12
2.2.4 Weighting method 15
2.3. Hessian-Free optimization for seismic FWI 18
2.3.1 Review of the Hessian-Free optimization method 19
2.3.2 Linear conjugate-gradient method 22
2.3.3 Matrix-vector product using the FDA method 25
2.3.4 Preconditioned Hessian-Free optimization 29


Chapter 3. Improved Hessian-Free optimization 32

3.1. Analysis of the Hessian approximation 32
3.1.1 Analysis of the forward and central FDA methods 33
3.1.2 Analysis of frequency dependency 40
3.1.3 Analysis of model dependency 48
3.1.4 Limitation of the Hessian approximation 57
3.2. The improved Hessian-Free optimization 59
3.2.1 Theory of the improved Hessian-Free optimization 60
3.2.2 Demonstration of the improved Hessian-Free optimization 69
3.2.3 Advantages of the improved Hessian-Free optimization 85


Chapter 4. Numerical examples 87

4.1. The Marmousi model 88
4.2. The acoustic Overthrust model with individual source 96
4.3. The acoustic Overthrust model with simultaneous source 105


Chapter 5. Conclusions 118


Bibliography 121


Abstract in Korean 125
-
dc.formatapplication/pdf-
dc.format.extent3714955 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectseismic full waveform inversion-
dc.subjecttruncated Newton method-
dc.subjectHessian-free method-
dc.subjectacoustic wave equation-
dc.subject.ddc622.33-
dc.titleImproved Hessian-Free optimization for acoustic full waveform inversion-
dc.title.alternative음향파 파형역산을 위한 개선된 헤시안-프리 최적화 기법-
dc.typeThesis-
dc.contributor.AlternativeAuthorShinwoong Kim-
dc.description.degreeDoctor-
dc.contributor.affiliation공과대학 에너지시스템공학부-
dc.date.awarded2017-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share