Browse
S-Space
Graduate School of Convergence Science and Technology (융합과학기술대학원)
Dept. of Transdisciplinary Studies(융합과학부)
Journal Papers (저널논문_융합과학부)
Independent component analysis by lp-norm optimization
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Sungheon | - |
dc.contributor.author | Kwak, Nojun | - |
dc.creator | 곽노준 | - |
dc.date.accessioned | 2018-01-24T06:02:48Z | - |
dc.date.available | 2018-01-25T09:48:24Z | - |
dc.date.created | 2018-11-30 | - |
dc.date.issued | 2018-04 | - |
dc.identifier.citation | Pattern Recognition, Vol.76, pp.752-760 | - |
dc.identifier.issn | 0031-3203 | - |
dc.identifier.uri | https://hdl.handle.net/10371/139292 | - |
dc.description.abstract | In this paper, a couple of new algorithms for independent component analysis (ICA) are proposed. In the proposed methods, the independent sources are assumed to follow a predefined distribution of the form f (s) = alpha exp(-beta vertical bar s vertical bar(p)) and a maximum likelihood estimation is used to separate the sources. In the first method, a gradient ascent method is used for the maximum likelihood estimation, while in the second, a non-iterative algorithm is proposed based on the relaxation of the problem. The maximization of the log-likelihood of the estimated source X(T)w given the parameter p and the data X is shown to be equivalent to the minimization of l(p)-norm of the projected data X(T)w. This formulation of ICA has a very close relationship with the Lp-PCA where the maximization of the same objective function is solved. The proposed algorithm solves an approximation of the l(p)-norm minimization problem for both super-(p < 2) and sub-Gaussian (p > 2) cases and shows superior performance in separating independent sources than the state of the art algorithms for ICA computation. | - |
dc.language | 영어 | - |
dc.language.iso | en | en |
dc.publisher | Pergamon Press | - |
dc.title | Independent component analysis by lp-norm optimization | - |
dc.type | Article | - |
dc.contributor.AlternativeAuthor | 박성헌 | - |
dc.contributor.AlternativeAuthor | 곽노준 | - |
dc.identifier.doi | 10.1016/j.patcog.2017.10.006 | - |
dc.citation.journaltitle | Pattern Recognition | - |
dc.identifier.wosid | 000424853800056 | - |
dc.identifier.scopusid | 2-s2.0-85031774316 | - |
dc.description.srnd | OAIID:RECH_ACHV_DSTSH_NO:T201715436 | - |
dc.description.srnd | RECH_ACHV_FG:RR00200001 | - |
dc.description.srnd | ADJUST_YN: | - |
dc.description.srnd | EMP_ID:A079380 | - |
dc.description.srnd | CITE_RATE:4.582 | - |
dc.description.srnd | DEPT_NM:융합과학부 | - |
dc.description.srnd | EMAIL:nojunk@snu.ac.kr | - |
dc.description.srnd | SCOPUS_YN:Y | - |
dc.description.srnd | CONFIRM:Y | - |
dc.citation.endpage | 760 | - |
dc.citation.startpage | 752 | - |
dc.citation.volume | 76 | - |
dc.description.isOpenAccess | N | - |
dc.contributor.affiliatedAuthor | Kwak, Nojun | - |
dc.identifier.srnd | T201715436 | - |
dc.type.rims | ART | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.subject.keywordPlus | ALGORITHM | - |
dc.subject.keywordPlus | REPRESENTATION | - |
dc.subject.keywordPlus | ICA | - |
dc.subject.keywordAuthor | ICA | - |
dc.subject.keywordAuthor | PCA | - |
dc.subject.keywordAuthor | lp-Norm | - |
dc.subject.keywordAuthor | Maximum likelihood estimation | - |
dc.subject.keywordAuthor | Super-Gaussian | - |
dc.subject.keywordAuthor | Sub-Gaussian | - |
- Appears in Collections:
- Graduate School of Convergence Science and Technology (융합과학기술대학원)Dept. of Transdisciplinary Studies(융합과학부)Journal Papers (저널논문_융합과학부)
- Files in This Item: There are no files associated with this item.
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.