Publications

Detailed Information

Yield enhancement of glucose and xylooligosaccharide by controlling biomass constituents of Eucalyptus pellita : 바이오매스 구성요소 조절에 의한 유칼립투스로부터 글루코오스와 자일로올리고당의 수율 향상 연구

DC Field Value Language
dc.contributor.advisor최인규-
dc.contributor.author장수경-
dc.date.accessioned2018-05-28T16:35:50Z-
dc.date.available2018-05-28T16:35:50Z-
dc.date.issued2018-02-
dc.identifier.other000000150589-
dc.identifier.urihttps://hdl.handle.net/10371/140806-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 농업생명과학대학 산림과학부, 2018. 2. 최인규.-
dc.description.abstract본 연구에서는 효소 당화에 미치는 바이오매스 구성요소의 영향을 이해하기 위해 난분해성 수종(유칼립투스)을 대상으로 헤미셀룰로오스 제거(열수 처리), 리그닌 제거(아염소산나트륨 처리), 셀룰로오스 결정화도 조절(수산화나트륨 처리)를 실시 하였다. 그리고 열수 처리를 이용하여 고부가가치 산물인 자일로 올리고당의 최적 생산 조건을 구명하였다. 또한, 바이오매스 구성 요소 변화와 글루코오스 수율에 대해 상관관계분석 및 회귀분석을 실시하여 처리 방법이 알려지지 않은 수종에 대한 활용 방안과 가이드라인을 제시하고자 하였다.
열수 처리(170˚C, 50분)를 통해 8.3%(전환율: 67.2%)의 자일로올리고당을 생산하였으나, 자일로올리고당의 함량은 열수처리 조건이 가혹해짐에 따라 0.8%까지 감소하였다. 자일로올리고당 중 함량이 가장 높은 것은 자일로비오스로써 상기 조건에서 3.0%까지 생산되었다. 또한, 자일로테트라오스(1.5%), 자일로펜타오스(1.0%), 자일로헥사오스(0.8%) 역시 상기 조건에서 생산되었다. 한편, 열수 처리(190˚C, 50분) 후 고형분을 이용하여 효소 당화를 진행한 결과, 헤미셀룰로오스 제거율은 96.2%로 나타난 반면, 효소 소화율과 글루코오스 수율은 각각 21.3%와 28.2%으로 나타났다. 이를 통해 바이오매스의 구성요소와 글루코오스 수율 사이의 상관관계를 통계 분석 프로그램(SAS)를 이용하여 분석하였다. 그 결과, 헤미셀룰로 오스와 리그닌 제거율에 따른 결정계수는 각각 0.6768과 0.0390 으로 나타났다. 한편, 두 인자 (헤미셀룰로오스와 리그닌)에 대한 선형 회귀 모델의 결정계수는 0.7177로 단일 인자의 결과보다 다소 증가하였다.
34.8%였던 E. pellita의 리그닌 함량은 4 g의 아염소산나트륨과 0.8 mL의 아세트산을 3회(총 반응시간: 180분) 투입한 반응 조건에서 9.0%까지 감소하였다. 상기 반응 결과, 29.0%였던 E. pellita의 Klason 리그닌 함량은 2.4%까지 감소한 반면, acid-soluble 리그닌은 E. pellita(2.3%)보다 오히려 증가(6.6%)한 결과를 나타냈다. 한편, 헤미셀룰로오스 제거(75%)를 진행한 고형분에 대해 4 g의 아염소산나트륨과 0.8 mL의 아세트산을 2회 처리(총 반응시간: 120분)한 결과, 총 리그닌은 0.3%까지 크게 감소하였다. 28.2%가 최대 글루코오스 수율이였던 열수 처리 후 당화 결과와 비교하여, 열수 처리와 아염소산나트륨 처리를 순차적 으로 진행한 경우 최대 글루코오스 수율은 87.5%까지 크게 증가 하였다. 하지만, 열수 처리 없이 아염소산나트륨 처리만 진행한 결과에서도 83.9%의 높은 글루코오스 수율을 획득할 수 있었다. 리그닌 제거율과 글루코오스 수율 사이의 상관관계 분석 결과에 따르면, 결정계수는 0.9063으로 나타났고 이는 열수 처리 결과에 비해 크게 증가한 것이다. 게다가 두 인자의 선형 회귀 분석 결과 나타난 결정계수는 0.9285로 보다 증가하였고 이는 리그닌의 제거가 글루코오스 생산에 큰 영향력은 주는 인자임을 나타내는 결과이다.
59.7%였던 E. pellita의 결정화도는 열수 처리를 통해 68.9% 까지 다소 증가하였다. 하지만 수산화나트륨 처리 후의 시료에 대한 결정화도는 계산할 수 없었는데, 선행 처리 결과에 상관없이 수산화 나트륨 처리를 진행할 경우, 결정화 영역을 나타내는 I002 피크가 사라졌기 때문이다. 효소 당화 결과를 통해 수산화 나트륨 처리를 함으로써 원시료의 글루코오스 수율이 향상되는 것으로 나타났다. 한편, 열수 처리와 아염소산 나트륨 처리를 순차적으로 진행한 시료에 대해서는 수산화나트륨 처리를 하지 않은 시료와 비교할 경우 글루코오스 수율이 유사하거나 다소 감소하였다.
본 연구에서는 열수 처리, 아염소산나트륨 처리, 수산화나트륨 처리를 통해 바이오매스의 구성요소(헤미셀룰로오스, 리그닌, 셀룰 로오스 결정화도)을 조절하였다. 상관관계 분석을 통해 바이오매스 내 리그닌의 존재는 효소 활성과 글루코오스 생산을 방해하는 강력한 인자로 밝혀졌다. 그러므로 높은 난분해성을 지닌 바이오 매스라도 헤미셀룰로오스와 리그닌의 적절한 분해 기술 적용을 통해 자일로올리고당과 글루코오스를 원활하게 생산할 것으로 사료 된다. 하지만, 추후 연구를 통해 목질계 바이오매스의 안정적인 활용을 위하여 생산된 자일로올리고당의 정제 및 분해된 리그닌의 회수가 수행되어야 할 것이다.
-
dc.description.abstractIn this study, to understand effects of biomass constituents on enzymatic hydrolysis, highly recalcitrant lignocellulosic biomass (Eucalyptus pellita) was used for reactions of hemicellulose removal (liquid hot water treatment), delignification (sodium chlorite treatment), and cellulose crystallinity modification (sodium hydroxide treatment), respectively. Additionally xylooligosaccharides as a value-added byproduct were produced under an optimal condition of liquid hot water treatment. To elucidate the effect of the constituents of the lignocellulosic biomass, correlation and regression assessments were performed to develop a guideline model for determining which strategy to address unknown feedstock.
Xylooligosaccharides were suitably produced up to 8.3% (67.2% conversion rate) at 170°C for 50 min
-
dc.description.abstracthowever, the total amount decreased steadily to 0.8% with an increase in treatment severity. The maximum content of xylobiose, which was the most produced among xylooligosaccharide, was 3.0% under the aforementioned conditions. Meanwhile, the maximum amounts of xylotetraose (1.5%), xylopentaose (1.0%), and xylohexaose (0.8%) also occurred under these conditions. After enzymatic hydrolysis using solid residue, the enzymatic digestibility and glucose yield increased to 21.3% and 28.2%, respectively, at 190°C for 50 min, even though the hemicellulose removal rate was 96.2% under this condition. A correlation analysis between biomass constituents and glucose yield was conducted using the statistical program SAS. Adjusted R-squared values of the hemicellulose and lignin removal rates for linear regression models were determined as 0.6768 and 0.0390, respectively. Meanwhile, a linear regression model for a double factor (hemicellulose and lignin) had a slightly higher adjusted R-squared value (0.7177) compared to that of the single factor.
The amount of total lignin in E. pellita (34.8%) was obviously reduced up to 9.0% under 4 g of sodium chlorite and 0.8 mL of acetic acid with 3 times input (total reaction time: 180 min). In this case, Klason lignin (2.4%) was entirely eliminated compared to that of E. pellita (29.0%), whereas acid-soluble lignin (6.6%) was preferably increased compared to that of E. pellita (2.3%). Meanwhile, the total lignin was almost removed up to 0.3% under 4 g of sodium chlorite and 0.8 mL of acetic acid with 2 times input (total reaction time: 120 min) using 75% hemicellulose removed solid residue. In addition, the maximum glucose yield (87.5%) after the sodium chlorite treatment with liquid hot water treatment was dramatically improved compared to that of liquid hot water alone (28.2%). However, a high glucose yield (83.9%) could also be obtained by treatment with sodium chlorite alone. According to the correlation analysis between the lignin removal rate and the glucose yield, the adjusted R-squared value was determined at 0.9063, which is much higher than the results obtained for liquid hot water treatment. Furthermore, the adjusted R-squared value of the double factor after linear regression analysis was increased to 0.9285, which indicates that lignin removal has a significant influence on glucose production.
The crystallinity index of E. pellita was slightly increased from 59.7% to 68.9% after liquid hot water treatment. However, crystallinity index could not be determined after sodium hydroxide treatment because the peak of I002, which indicates the crystalline region in cellulose structure, disappeared regardless of the preceding treatment. The sodium hydroxide treatment was beneficial for enhancing the glucose yield to 36.9% from 0.5% of untreated raw material. Meanwhile, in the case of liquid hot water and sodium chlorite treated solid residues, the glucose yield after sodium hydroxide treatment was similar or slightly decreased.
Consequently, treatments using liquid hot water, sodium chlorite (with acetic acid), and sodium hydroxide were induced for controlling a specific biomass constituent (hemicellulose, lignin, and cellulose crystallinity). According to the correlation analysis, existence of lignin in biomass revealed as the strongest factor to reduce cellulase activity and glucose production. Therefore, xylooligosaccharide and glucose can be produced suitably by application of appropriate technology for controlling hemicellulose or lignin content even though a high recalcitrant biomass was utilized. However, purification of xylooligosaccharide and recovery of lignin fraction should be investigated for ensuring feasibility of lignocellulosic biomass application in future studies.
-
dc.description.tableofcontentsChapter 1. Introduction 1
1. Background 2
1.1. Utilization of biomass as sustainable resource 2
1.2. Biomass recalcitrance 5
1.3. Relationship between glucose production and biomass constituents 9
1.4. Xylan and xylooligosaccharides 13
2. Objectives 16
3. Literature review 18
3.1. Hemicellulose removal and xylooligosaccharide production 18
3.1.1. Effect of hemicellulose concerning glucose production 18
3.1.2. Strategies of xylooligosaccharide production 19
3.2. Pretreatment strategies for lignin removal 23
3.2.1. Lignin removal methods and its efficiency 23
3.2.2. Lignin effect concerning glucose production 28
3.3. Glucose production according to cellulose properties 31
3.3.1. Crystallinity concerning glucose production 31
3.3.2. Strategy for cellulose structure and crystallinity change 32
Chapter 2. Hemicellulose degradation and xylooligosaccharide production with correlation analysis between biomass constituents and glucose yield 34
1. Introduction 35
2. Materials and methods 38
2.1. Materials 38
2.2. Xylooligosaccharide production 38
2.3. Analysis of solid residues 42
2.3.1. Water-insoluble solid recovery rate 42
2.3.2. Chemical composition analysis 42
2.3.3. Determination of extractives 42
2.3.4. Determination of Klason lignin and acid-soluble lignin 43
2.3.5. Determination of structural sugar 44
2.4. Analysis of liquid hydrolysates 45
2.4.1. Xylose and xylooligosaccharide analysis 45
2.4.2. Monomeric sugar analysis 45
2.4.3. Sugar derivatives analysis 46
2.5. Enzymatic hydrolysis 46
2.6. Correlation analysis 47
3. Results and discussion 50
3.1. Conversion characteristics of Eucalyptus pellita under a liquid hot water treatment 50
3.1.1. Physicochemical characteristics of solid residues 50
3.1.2. Chemical composition of liquid hydrolysates 58
3.2. Xylooligosaccharide production via liquid hot water treatment 64
3.3. Enzymatic hydrolysis of solid residues 78
3.4. Effects of biomass constituents on enzymatic hydrolysis 82
3.4.1. A relationship between hemicellulose removal and glucose production 82
3.4.2. A relationship between lignin removal and glucose production 86
3.4.3. A relationship between double factors and glucose production 89
4. Conclusions 91
Chapter 3. Selective lignin decomposition with correlation analysis between biomass constituents and glucose yield 94
1. Introduction 95
2. Materials and methods 97
2.1. Materials 97
2.2. Sodium chlorite treatment 97
2.3. Analysis of solid residues 99
2.3.1. Water-insoluble solid recovery rate 99
2.3.2. Determination of Klason lignin and acid-soluble lignin 99
2.3.3. Determination of structural sugar 99
2.4. Enzymatic hydrolysis 99
2.5. Correlation analysis 100
3. Results and discussion 102
3.1. Lignin decomposition of Eucalyptus pellita by sodium chlorite treatment 102
3.1.1. Physicochemical characteristics of solid residues 102
3.1.2. Enzymatic hydrolysis of solid residues 112
3.2. Lignin decomposition of liquid hot water treated Eucalyptus pellita by sodium chlorite treatment 116
3.2.1. Physicochemical characteristics of solid residues 120
3.2.2. Enzymatic hydrolysis of solid residues 128
3.3. Effects of biomass constituents on enzymatic hydrolysis 132
3.3.1. A relationship between hemicellulose removal and glucose production 132
3.3.2. A relationship between lignin removal and glucose production 135
3.3.3. A relationship between double factors and glucose production 138
4. Conclusions 141
Chapter 4. Change of cellulose crystalline structure and glucose production 144
1. Introduction 145
2. Materials and methods 147
2.1. Materials 147
2.2. Treatment for crystallinity change 147
2.3. X-ray diffraction analysis of solid residues 148
2.4. Enzymatic hydrolysis 149
3. Results and discussion 151
3.1. Crystallinity index of solid residue after liquid hot water treatment 151
3.2. Crystallinity index of solid residue after liquid hot water treatment with sodium chlorite treatment 159
3.3. Enzymatic hydrolysis of solid residue 168
4. Conclusions 173
Chapter 5. Concluding remarks 175
References 181
초록 206
-
dc.formatapplication/pdf-
dc.format.extent2778487 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectliquid hot water treatment-
dc.subjectxylooligosaccharide-
dc.subjectdelignification-
dc.subjectglucose production-
dc.subjectEucalyptus pellita-
dc.subject.ddc634.9-
dc.titleYield enhancement of glucose and xylooligosaccharide by controlling biomass constituents of Eucalyptus pellita-
dc.title.alternative바이오매스 구성요소 조절에 의한 유칼립투스로부터 글루코오스와 자일로올리고당의 수율 향상 연구-
dc.typeThesis-
dc.contributor.AlternativeAuthorSoo-Kyeong Jang-
dc.description.degreeDoctor-
dc.contributor.affiliation농업생명과학대학 산림과학부-
dc.date.awarded2018-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share